Regulatory T-cells inhibit microglia-induced pain hypersensitivity in female mice

  1. Julia Kuhn
  2. Ilia D Vainchtein
  3. Joao M Braz
  4. Katherine Hamel
  5. Mollie Bernstein
  6. Veronica Craik
  7. Madelene W Dahlgren
  8. Jorge Ortiz-carpena
  9. Ari Molofsky
  10. Anna Molofsky  Is a corresponding author
  11. Allan Basbaum  Is a corresponding author
  1. University of California San Francisco, United States
  2. University of California, San Francisco, United States
  3. University California San Francisco, United States

Abstract

Peripheral nerve injury-induced neuropathic pain is a chronic and debilitating condition characterized by mechanical hypersensitivity. We previously identified microglial activation via release of colony stimulating factor 1 (CSF1) from injured sensory neurons as a mechanism contributing to nerve injury-induced pain. Here we show that intrathecal administration of CSF1, even in the absence of injury, is sufficient to induce pain behavior, but only in male mice. Transcriptional profiling and morphologic analyses after intrathecal CSF1 showed robust immune activation in male but not female microglia. CSF1 also induced marked expansion of lymphocytes within the spinal cord meninges, with preferential expansion of regulatory T-cells (Tregs) in female mice. Consistent with the hypothesis that Tregs actively suppress microglial activation in females, Treg deficient (Foxp3DTR) female mice showed increased CSF1-induced microglial activation and pain hypersensitivity equivalent to males. We conclude that sexual dimorphism in the contribution of microglia to pain results from Treg-mediated suppression of microglial activation and pain hypersensitivity in female mice.

Data availability

RNA sequencing data are available through GEO accession #GSE 184801All data generated or analysed during this study and required for conclusions to be drawn are included in the manuscript and supporting files.The upload can be identified at the following link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE184801

The following data sets were generated

Article and author information

Author details

  1. Julia Kuhn

    Anatomy, University of California San Francisco, San Francisco, United States
    Competing interests
    Julia Kuhn, Patent approved on use of CSF1 blockade to treat neuropathic pain (Publication Number WO/2016/057800)..
  2. Ilia D Vainchtein

    Psychiatry, University of California San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Joao M Braz

    Anatomy, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Katherine Hamel

    Anatomy, University of California San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Mollie Bernstein

    Anatomy, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2327-5771
  6. Veronica Craik

    Anatomy, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  7. Madelene W Dahlgren

    Laboratory Medicine, University California San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  8. Jorge Ortiz-carpena

    Laboratory Medicine, University of California San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  9. Ari Molofsky

    Laboratory Medicine, University of California San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  10. Anna Molofsky

    Laboratory Medicine, University of California San Francisco, San Francisco, United States
    For correspondence
    Anna.Molofsky@ucsf.edu
    Competing interests
    No competing interests declared.
  11. Allan Basbaum

    Anatomy, University of California San Francisco, San Francisco, United States
    For correspondence
    allan.basbaum@ucsf.edu
    Competing interests
    Allan Basbaum, Reviewing editor, eLifePatent approved on use of CSF1 blockade to treat neuropathic pain (Publication Number WO/2016/057800)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1710-6333

Funding

National Institute of Neurological Disorders and Stroke (R35 NS097306)

  • Allan Basbaum

Open Philathropy

  • Allan Basbaum

Pew Charitable Trusts

  • Anna Molofsky

National Institute of Mental Health (R01MH119349)

  • Anna Molofsky

National Institute of Mental Health (DP2MH116507)

  • Anna Molofsky

Burroughs Wellcome Fund

  • Anna Molofsky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: As noted in the description of the mice used in this study:"All mouse experiments were approved by UCSF Institutional Animal Care and Use Committee and conducted in accordance with the guidelines established by the Institutional Animal Care and Use Committee and Laboratory Animal Resource Center."Please note that this is a renewal that occurred during the course of the revision to the manuscript.APPROVAL NUMBER: AN183265-02DApproval Date: June 15, 2021Expiration Date: February 26, 2022

Copyright

© 2021, Kuhn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,812
    views
  • 745
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia Kuhn
  2. Ilia D Vainchtein
  3. Joao M Braz
  4. Katherine Hamel
  5. Mollie Bernstein
  6. Veronica Craik
  7. Madelene W Dahlgren
  8. Jorge Ortiz-carpena
  9. Ari Molofsky
  10. Anna Molofsky
  11. Allan Basbaum
(2021)
Regulatory T-cells inhibit microglia-induced pain hypersensitivity in female mice
eLife 10:e69056.
https://doi.org/10.7554/eLife.69056

Share this article

https://doi.org/10.7554/eLife.69056

Further reading

    1. Neuroscience
    Gyeong Hee Pyeon, Hyewon Cho ... Yong Sang Jo
    Research Article Updated

    Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neurons during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, and ensuring adaptive responses to varying levels of danger.

    1. Neuroscience
    Li Shen, Shuo Li ... Yi Jiang
    Research Article

    When observing others’ behaviors, we continuously integrate their movements with the corresponding sounds to enhance perception and develop adaptive responses. However, how the human brain integrates these complex audiovisual cues based on their natural temporal correspondence remains unclear. Using electroencephalogram (EEG), we demonstrated that rhythmic cortical activity tracked the hierarchical rhythmic structures in audiovisually congruent human walking movements and footstep sounds. Remarkably, the cortical tracking effects exhibit distinct multisensory integration modes at two temporal scales: an additive mode in a lower-order, narrower temporal integration window (step cycle) and a super-additive enhancement in a higher-order, broader temporal window (gait cycle). Furthermore, while neural responses at the lower-order timescale reflect a domain-general audiovisual integration process, cortical tracking at the higher-order timescale is exclusively engaged in the integration of biological motion cues. In addition, only this higher-order, domain-specific cortical tracking effect correlates with individuals’ autistic traits, highlighting its potential as a neural marker for autism spectrum disorder. These findings unveil the multifaceted mechanism whereby rhythmic cortical activity supports the multisensory integration of human motion, shedding light on how neural coding of hierarchical temporal structures orchestrates the processing of complex, natural stimuli across multiple timescales.