Functional CDKN2A assay identifies frequent deleterious alleles misclassified as variants of uncertain significance

Abstract

Pathogenic germline CDKN2A variants are associated with an increased risk of pancreatic ductal adenocarcinoma (PDAC). CDKN2A variants of uncertain significance (VUSs) are reported in up to 4.3% of patients with PDAC and result in significant uncertainty for patients and their family members as an unknown fraction are functionally deleterious, and therefore, likely pathogenic. Functional characterization of CDKN2A VUSs is needed to reclassify variants and inform clinical management. 29 germline CDKN2A VUSs previously reported in patients with PDAC or in ClinVar were evaluated using a validated in vitro cell proliferation assay. 12 of the 29 CDKN2A VUSs were functionally deleterious (11 VUSs) or potentially functionally deleterious (1 VUS) and were reclassified as likely pathogenic variants. Thus, over 40% of CDKN2A VUSs identified in patients with PDAC are functionally deleterious and likely pathogenic. When incorporating VUSs found to be functionally deleterious, and reclassified as likely pathogenic, the prevalence of pathogenic/likely pathogenic CDKN2A in patients with PDAC reported in the published literature is increased to up to 4.1% of patients, depending on family history. Therefore, CDKN2A VUSs may play a significant, unappreciated role in risk of pancreatic cancer. These findings have significant implications for the counselling and care of patients and their relatives.

Data availability

All data generated or analysed during this study are included in the manuscript, supporting files, and as Source data and Source code.

Article and author information

Author details

  1. Hirokazu Kimura

    Department of Pathology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Raymond M Paranal

    Department of Pathology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Neha Nanda

    Department of Pathology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Laura D Wood

    Department of Pathology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  5. James R Eshleman

    Department of Pathology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  6. Ralph H Hruban

    Department of Pathology, Johns Hopkins University, Baltimore, United States
    Competing interests
    Ralph H Hruban, has the right to receive royalty payments from Thrive Earlier Diagnosis for the GNAS in pancreatic cysts invention in a relationship overseen by Johns Hopkins University..
  7. Michael G Goggins

    Department of Pathology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  8. Alison P Klein

    Department of Pathology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  9. Nicholas Jason Roberts

    The Johns Hopkins University, Baltimore, United States
    For correspondence
    nrobert8@jhmi.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8709-0664

Funding

The Sol Goldman Pancreatic Cancer Research Center (Pilot Grant)

  • Nicholas Jason Roberts

National Institutes of Health (S10 OD026859)

  • Nicholas Jason Roberts

The Rolfe Pancreatic Cancer Foundation

  • Nicholas Jason Roberts

National Institutes of Health (P50 CA622924)

  • Alison P Klein
  • Nicholas Jason Roberts

The Japanese Society of Gastroenterology

  • Hirokazu Kimura

The Japan Society for Promotion of Science

  • Hirokazu Kimura

The Joseph C Monastra Foundation

  • Nicholas Jason Roberts

The Geral O Mann Foundation

  • Nicholas Jason Roberts

Art Creates Cures Foundation

  • Nicholas Jason Roberts

Susan Wojcicki and Denis Troper

  • Nicholas Jason Roberts

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kimura et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,513
    views
  • 338
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hirokazu Kimura
  2. Raymond M Paranal
  3. Neha Nanda
  4. Laura D Wood
  5. James R Eshleman
  6. Ralph H Hruban
  7. Michael G Goggins
  8. Alison P Klein
  9. Nicholas Jason Roberts
(2022)
Functional CDKN2A assay identifies frequent deleterious alleles misclassified as variants of uncertain significance
eLife 11:e71137.
https://doi.org/10.7554/eLife.71137

Share this article

https://doi.org/10.7554/eLife.71137

Further reading

    1. Cancer Biology
    Ismail M Meraz, Mourad Majidi ... Jack A Roth
    Research Article

    Expression of NPRL2/TUSC4, a tumor-suppressor gene, is reduced in many cancers including NSCLC. Restoration of NPRL2 induces DNA damage, apoptosis, and cell-cycle arrest. We investigated NPRL2 antitumor immune responses in aPD1R/KRAS/STK11mt NSCLC in humanized-mice. Humanized-mice were generated by transplanting fresh human cord blood-derived CD34 stem cells into sub-lethally irradiated NSG mice. Lung-metastases were developed from KRAS/STK11mt/aPD1R A549 cells and treated with NPRL2 w/wo pembrolizumab. NPRL2-treatment reduced lung metastases significantly, whereas pembrolizumab was ineffective. Antitumor effect was greater in humanized than non-humanized-mice. NPRL2 + pembrolizumab was not synergistic in KRAS/STK11mt/aPD1R tumors but was synergistic in KRASwt/aPD1S H1299. NPRL2 also showed a significant antitumor effect on KRASmt/aPD1R LLC2 syngeneic-tumors. The antitumor effect was correlated with increased infiltration of human cytotoxic-T, HLA-DR+DC, CD11c+DC, and downregulation of myeloid and regulatory-T cells in TME. Antitumor effect was abolished upon in-vivo depletion of CD8-T, macrophages, and CD4-T cells whereas remained unaffected upon NK-cell depletion. A distinctive protein-expression profile was found after NPRL2 treatment. IFNγ, CD8b, and TBX21 associated with T-cell functions were significantly increased, whereas FOXP3, TGFB1/B2, and IL-10RA were strongly inhibited by NPRL2. A list of T-cell co-inhibitory molecules was also downregulated. Restoration of NPRL2 exhibited significantly slower tumor growth in humanized-mice, which was associated with increased presence of human cytotoxic-T, and DC and decreased percentage of Treg, MDSC, and TAM in TME. NPRL2-stable cells showed a substantial increase in colony-formation inhibition and heightened sensitivity to carboplatin. Stable-expression of NPRL2 resulted in the downregulation of MAPK and AKT-mTOR signaling. Taken-together, NPRL2 gene-therapy induces antitumor activity on KRAS/STK11mt/aPD1R tumors through DC-mediated antigen-presentation and cytotoxic immune-cell activation.

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.