PRC1 sustains the integrity of neural fate in the absence of PRC2 function

  1. Ayana Sawai
  2. Sarah Pfennig
  3. Milica Bulajić
  4. Alexander Miller
  5. Alireza Khodadadi-Jamayran
  6. Esteban Orlando Mazzoni
  7. Jeremy S Dasen  Is a corresponding author
  1. NYU School of Medicine, United States
  2. New York University, United States
  3. NYU School of Medcine, United States

Abstract

Polycomb repressive complexes (PRCs) 1 and 2 maintain stable cellular memories of early fate decisions by establishing heritable patterns of gene repression. PRCs repress transcription through histone modifications and chromatin compaction, but their roles in neuronal subtype diversification are poorly defined. We found that PRC1 is essential for the specification of segmentally-restricted spinal motor neuron (MN) subtypes, while PRC2 activity is dispensable to maintain MN positional identities during terminal differentiation. Mutation of the core PRC1 component Ring1 in mice leads to increased chromatin accessibility and ectopic expression of a broad variety of fates determinants, including Hox transcription factors, while neuronal class-specific features are maintained. Loss of MN subtype identities in Ring1 mutants is due to the suppression of Hox-dependent specification programs by derepressed Hox13 paralogs (Hoxa13, Hoxb13, Hoxc13, Hoxd13). These results indicate that PRC1 can function in the absence of de novo PRC2-dependent histone methylation to maintain chromatin topology and postmitotic neuronal fate.

Data availability

RNAseq and ATACseq data are available through GEO (GSE175503).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ayana Sawai

    Department of Neuroscience and Physiology, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5446-4930
  2. Sarah Pfennig

    Department of Neuroscience and Physiology, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Milica Bulajić

    Department of Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexander Miller

    Department of Neuroscience and Physiology, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alireza Khodadadi-Jamayran

    Applied Bioinformatics Laboratories, NYU School of Medcine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Esteban Orlando Mazzoni

    Department of Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8994-681X
  7. Jeremy S Dasen

    Department of Neuroscience and Physiology, NYU School of Medicine, New York, United States
    For correspondence
    Jeremy.Dasen@nyumc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9434-874X

Funding

National Institutes of Health (R35 NS116858)

  • Jeremy S Dasen

National Institutes of Health (R01 NS062822)

  • Jeremy S Dasen

National Institutes of Health (R01 NS097550)

  • Jeremy S Dasen

National Institutes of Health (NS 100897)

  • Esteban Orlando Mazzoni

National Institutes of Health (T32 GM007238)

  • Ayana Sawai

National Institutes of Health (F31 NS087772)

  • Ayana Sawai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals work was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animal work was approved by the Institutional Animal Care and use Committee of the NYU School of Medicine in accordance to NIH guidelines.

Copyright

© 2022, Sawai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,093
    views
  • 315
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ayana Sawai
  2. Sarah Pfennig
  3. Milica Bulajić
  4. Alexander Miller
  5. Alireza Khodadadi-Jamayran
  6. Esteban Orlando Mazzoni
  7. Jeremy S Dasen
(2022)
PRC1 sustains the integrity of neural fate in the absence of PRC2 function
eLife 11:e72769.
https://doi.org/10.7554/eLife.72769

Share this article

https://doi.org/10.7554/eLife.72769

Further reading

    1. Developmental Biology
    Michele Bertacchi, Gwendoline Maharaux ... Michèle Studer
    Research Article Updated

    The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.

    1. Developmental Biology
    Shannon H Carroll, Sogand Schafer ... Eric C Liao
    Research Article

    Wnt signaling plays crucial roles in embryonic patterning including the regulation of convergent extension (CE) during gastrulation, the establishment of the dorsal axis, and later, craniofacial morphogenesis. Further, Wnt signaling is a crucial regulator of craniofacial morphogenesis. The adapter proteins Dact1 and Dact2 modulate the Wnt signaling pathway through binding to Disheveled. However, the distinct relative functions of Dact1 and Dact2 during embryogenesis remain unclear. We found that dact1 and dact2 genes have dynamic spatiotemporal expression domains that are reciprocal to one another suggesting distinct functions during zebrafish embryogenesis. Both dact1 and dact2 contribute to axis extension, with compound mutants exhibiting a similar CE defect and craniofacial phenotype to the wnt11f2 mutant. Utilizing single-cell RNAseq and an established noncanonical Wnt pathway mutant with a shortened axis (gpc4), we identified dact1/2-specific roles during early development. Comparative whole transcriptome analysis between wildtype and gpc4 and wildtype and dact1/2 compound mutants revealed a novel role for dact1/2 in regulating the mRNA expression of the classical calpain capn8. Overexpression of capn8 phenocopies dact1/2 craniofacial dysmorphology. These results identify a previously unappreciated role of capn8 and calcium-dependent proteolysis during embryogenesis. Taken together, our findings highlight the distinct and overlapping roles of dact1 and dact2 in embryonic craniofacial development, providing new insights into the multifaceted regulation of Wnt signaling.