The IRE1/XBP1 signaling axis promotes skeletal muscle regeneration through a cell non-autonomous mechanism

  1. Anirban Roy
  2. Meiricris Tomaz da Silva
  3. Raksha Bhat
  4. Kyle R Bohnert
  5. Takao Iwawaki
  6. Ashok Kumar  Is a corresponding author
  1. University of Houston, United States
  2. St Ambrose University, United States
  3. Kanazawa Medical University, Japan

Abstract

Skeletal muscle regeneration is regulated by coordinated activation of multiple signaling pathways activated in both injured myofibers and satellite cells. The unfolded protein response (UPR) is a major mechanism that detects and alleviates protein-folding stresses in ER. However, the role of individual arms of the UPR in skeletal muscle regeneration remain less understood. In the present study, we demonstrate that IRE1α (also known as ERN1) and its downstream target, XBP1, are activated in skeletal muscle of mice upon injury. Myofiber-specific ablation of IRE1 or XBP1 in mice diminishes skeletal muscle regeneration that is accompanied with reduced number of satellite cells and their fusion to injured myofibers. Ex vivo cultures of myofiber explants demonstrate that ablation of IRE1α reduces the proliferative capacity of myofiber-associated satellite cells. Myofiber-specific deletion of IRE1α dampens Notch signaling and canonical NF-kB pathway in skeletal muscle of mice. Our results also demonstrate that targeted ablation of IRE1α reduces skeletal muscle regeneration in the mdx mice, a model of Duchenne muscular dystrophy. Collectively, our results reveal that the IRE1α-mediated signaling promotes muscle regeneration through augmenting the proliferation of satellite cells in a cell non-autonomous manner.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Anirban Roy

    Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Meiricris Tomaz da Silva

    Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Raksha Bhat

    Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kyle R Bohnert

    Kinesiology Department, St Ambrose University, Davenport, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Takao Iwawaki

    Division of Cell Medicine, Department of Life Science, Kanazawa Medical University, Uchinada, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Ashok Kumar

    Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, United States
    For correspondence
    akumar43@central.uh.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8571-2848

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR059810)

  • Ashok Kumar

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR068313)

  • Ashok Kumar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (PROT20190043) of the University of Houston. All surgery was performed under Isoflurane, and every effort was made to minimize suffering.

Copyright

© 2021, Roy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,171
    views
  • 375
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anirban Roy
  2. Meiricris Tomaz da Silva
  3. Raksha Bhat
  4. Kyle R Bohnert
  5. Takao Iwawaki
  6. Ashok Kumar
(2021)
The IRE1/XBP1 signaling axis promotes skeletal muscle regeneration through a cell non-autonomous mechanism
eLife 10:e73215.
https://doi.org/10.7554/eLife.73215

Share this article

https://doi.org/10.7554/eLife.73215

Further reading

    1. Cancer Biology
    2. Cell Biology
    Rui Hua, Jean X Jiang
    Insight

    Cell crowding causes high-grade breast cancer cells to become more invasive by activating a molecular switch that causes the cells to shrink and spread.

    1. Cell Biology
    Dan Wu, Venkateswararao Eeda ... Weidong Wang
    Research Article

    Overnutrition engenders the expansion of adipose tissue and the accumulation of immune cells, in particular, macrophages, in the adipose tissue, leading to chronic low-grade inflammation and insulin resistance. In obesity, several proinflammatory subpopulations of adipose tissue macrophages (ATMs) identified hitherto include the conventional ‘M1-like’ CD11C-expressing ATM and the newly discovered metabolically activated CD9-expressing ATM; however, the relationship among ATM subpopulations is unclear. The ER stress sensor inositol-requiring enzyme 1α (IRE1α) is activated in the adipocytes and immune cells under obesity. It is unknown whether targeting IRE1α is capable of reversing insulin resistance and obesity and modulating the metabolically activated ATMs. We report that pharmacological inhibition of IRE1α RNase significantly ameliorates insulin resistance and glucose intolerance in male mice with diet-induced obesity. IRE1α inhibition also increases thermogenesis and energy expenditure, and hence protects against high fat diet-induced obesity. Our study shows that the ‘M1-like’ CD11c+ ATMs are largely overlapping with but yet non-identical to CD9+ ATMs in obese white adipose tissue. Notably, IRE1α inhibition diminishes the accumulation of obesity-induced metabolically activated ATMs and ‘M1-like’ ATMs, resulting in the curtailment of adipose inflammation and ensuing reactivation of thermogenesis, without augmentation of the alternatively activated M2 macrophage population. Our findings suggest the potential of targeting IRE1α for the therapeutic treatment of insulin resistance and obesity.