Structure-guided glyco-engineering of ACE2 for improved potency as soluble SARS-CoV-2 decoy receptor

  1. Tümay Capraz
  2. Nikolaus Ferdinand Kienzl
  3. Elisabeth Laurent
  4. Jan W Perthold
  5. Esther Föderl-Höbenreich
  6. Clemens Grünwald-Gruber
  7. Daniel Maresch
  8. Vanessa Monteil
  9. Janine Niederhöfer
  10. Gerald Wirnsberger
  11. Ali Mirazimi
  12. Kurt Zatloukal
  13. Lukas Mach  Is a corresponding author
  14. Josef M Penninger  Is a corresponding author
  15. Chris Oostenbrink  Is a corresponding author
  16. Johannes Stadlmann  Is a corresponding author
  1. University of Natural Resources and Life Sciences, Austria
  2. Medical University of Graz, Austria
  3. Karolinska Institute, Sweden
  4. Apeiron Biologics AG, Austria
  5. Austrian Academy of Sciences, Austria

Abstract

Infection and viral entry of SARS-CoV-2 crucially depends on the binding of its Spike protein to angiotensin converting enzyme 2 (ACE2) presented on host cells. Glycosylation of both proteins is critical for this interaction. Recombinant soluble human ACE2 can neutralize SARS-CoV-2 and is currently undergoing clinical tests for the treatment of COVID-19. We used 3D structural models and molecular dynamics simulations to define the ACE2 N-glycans that critically influence Spike-ACE2 complex formation. Engineering of ACE2 N-glycosylation by site-directed mutagenesis or glycosidase treatment resulted in enhanced binding affinities and improved virus neutralization without notable deleterious effects on the structural stability and catalytic activity of the protein. Importantly, simultaneous removal of all accessible N-glycans from recombinant soluble human ACE2 yields a superior SARS-CoV-2 decoy receptor with promise as effective treatment for COVID-19 patients.

Data availability

Molecular models and simulation trajectories are available through the BioExcel COVID-19 Molecular Structure and Therapeutics Hub (https://covid.bioexcel.eu/simulations/).

The following data sets were generated

Article and author information

Author details

  1. Tümay Capraz

    Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  2. Nikolaus Ferdinand Kienzl

    nstitute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8057-3930
  3. Elisabeth Laurent

    BOKU Core Facility Biomolecular and Cellular Analysis, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5234-5524
  4. Jan W Perthold

    Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  5. Esther Föderl-Höbenreich

    Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
    Competing interests
    No competing interests declared.
  6. Clemens Grünwald-Gruber

    Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  7. Daniel Maresch

    Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  8. Vanessa Monteil

    Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2652-5695
  9. Janine Niederhöfer

    Apeiron Biologics AG, Vienna, Austria
    Competing interests
    Janine Niederhöfer, employee of Apeiron Biologics. Apeiron holds a patent on the use of ACE2 for the treatment of lung, heart, or kidney injury and applied for a patent to treat COVID-19 with rshACE2..
  10. Gerald Wirnsberger

    Apeiron Biologics AG, Vienna, Austria
    Competing interests
    Gerald Wirnsberger, employee of Apeiron Biologics. Apeiron holds a patent on the use of ACE2 for the treatment of lung, heart, or kidney injury and applied for a patent to treat COVID-19 with rshACE2..
  11. Ali Mirazimi

    Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  12. Kurt Zatloukal

    Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5299-7218
  13. Lukas Mach

    Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
    For correspondence
    lukas.mach@boku.ac.at
    Competing interests
    No competing interests declared.
  14. Josef M Penninger

    Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
    For correspondence
    josef.penninger@ubc.ca
    Competing interests
    Josef M Penninger, declares a conflict of interest as a founder, supervisory board member, and shareholder of Apeiron Biologics. Apeiron holds a patent on the use of ACE2 for the treatment of lung, heart, or kidney injury and applied for a patent to treat COVID-19 with rshACE2..
  15. Chris Oostenbrink

    Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
    For correspondence
    chris.oostenbrink@boku.ac.at
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4232-2556
  16. Johannes Stadlmann

    Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
    For correspondence
    j.stadlmann@boku.ac.at
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5693-6690

Funding

Austrian Science Fund (W1224-B09)

  • Nikolaus Ferdinand Kienzl
  • Daniel Maresch
  • Lukas Mach
  • Chris Oostenbrink

Vienna Science and Technology Fund (COV20-015)

  • Tümay Capraz
  • Chris Oostenbrink

Innovative Medicines Initiative 2 Joint Undertaking (101005026)

  • Vanessa Monteil
  • Ali Mirazimi
  • Josef M Penninger

DOC fellowship of the Academy of Sciences (24987)

  • Jan W Perthold

T. von Zastrow foundation

  • Josef M Penninger
  • Johannes Stadlmann

Austrian Science Fund (Z271-B19)

  • Josef M Penninger
  • Johannes Stadlmann

Canada Research Chairs (F18-0133)

  • Josef M Penninger

Canadian Institutes of Health Research (F20-02343)

  • Josef M Penninger

Canadian Institutes of Health Research (F20-02015)

  • Josef M Penninger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Capraz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,821
    views
  • 287
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tümay Capraz
  2. Nikolaus Ferdinand Kienzl
  3. Elisabeth Laurent
  4. Jan W Perthold
  5. Esther Föderl-Höbenreich
  6. Clemens Grünwald-Gruber
  7. Daniel Maresch
  8. Vanessa Monteil
  9. Janine Niederhöfer
  10. Gerald Wirnsberger
  11. Ali Mirazimi
  12. Kurt Zatloukal
  13. Lukas Mach
  14. Josef M Penninger
  15. Chris Oostenbrink
  16. Johannes Stadlmann
(2021)
Structure-guided glyco-engineering of ACE2 for improved potency as soluble SARS-CoV-2 decoy receptor
eLife 10:e73641.
https://doi.org/10.7554/eLife.73641

Share this article

https://doi.org/10.7554/eLife.73641

Further reading

    1. Biochemistry and Chemical Biology
    Bernd K Gilsbach, Franz Y Ho ... Christian Johannes Gloeckner
    Research Article

    The Parkinson’s disease (PD)-linked protein Leucine-Rich Repeat Kinase 2 (LRRK2) consists of seven domains, including a kinase and a Roc G domain. Despite the availability of several high-resolution structures, the dynamic regulation of its unique intramolecular domain stack is nevertheless still not well understood. By in-depth biochemical analysis, assessing the Michaelis–Menten kinetics of the Roc G domain, we have confirmed that LRRK2 has, similar to other Roco protein family members, a KM value of LRRK2 that lies within the range of the physiological GTP concentrations within the cell. Furthermore, the R1441G PD variant located within a mutational hotspot in the Roc domain showed an increased catalytic efficiency. In contrast, the most common PD variant G2019S, located in the kinase domain, showed an increased KM and reduced catalytic efficiency, suggesting a negative feedback mechanism from the kinase domain to the G domain. Autophosphorylation of the G1+2 residue (T1343) in the Roc P-loop motif is critical for this phosphoregulation of both the KM and the kcat values of the Roc-catalyzed GTP hydrolysis, most likely by changing the monomer–dimer equilibrium. The LRRK2 T1343A variant has a similar increased kinase activity in cells compared to G2019S and the double mutant T1343A/G2019S has no further increased activity, suggesting that T1343 is crucial for the negative feedback in the LRRK2 signaling cascade. Together, our data reveal a novel intramolecular feedback regulation of the LRRK2 Roc G domain by a LRRK2 kinase-dependent mechanism. Interestingly, PD mutants differently change the kinetics of the GTPase cycle, which might in part explain the difference in penetrance of these mutations in PD patients.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Katherine A Senn, Karli A Lipinski ... Aaron A Hoskins
    Research Article

    Pre-mRNA splicing is catalyzed in two steps: 5ʹ splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6’s impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3ʹ SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3ʹ SS.