Oversized cells activate global proteasome-mediated protein degradation to maintain cell size homeostasis

  1. Shixuan Liu  Is a corresponding author
  2. Ceryl Tan
  3. Chloe Melo-Gavin
  4. Miriam B Ginzberg
  5. Ron Blutrich
  6. Nish Patel
  7. Michael Rape
  8. Kevin G Mark
  9. Ran Kafri  Is a corresponding author
  1. Stanford University, United States
  2. Hospital for Sick Children, Canada
  3. University of Toronto, Canada
  4. University of California, Berkeley, United States

Abstract

Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. Previously, we showed that cell size control involves both cell size checkpoints, which delay cell cycle progression in small cells, and size-dependent regulation of mass accumulation rates (Ginzberg et al., 2018). While we previously identified the p38 MAPK pathway as a key regulator of the mammalian cell size checkpoint (S. Liu et al., 2018), the mechanism of size-dependent growth rate regulation has remained elusive. Here, we quantified global rates of protein synthesis and degradation in cells of varying sizes, both under unperturbed conditions and in response to perturbations that trigger size-dependent compensatory growth slowdown. We found that protein synthesis rates scale proportionally with cell size across cell cycle stages and experimental conditions. In contrast, oversized cells that undergo compensatory growth slowdown exhibit a superlinear increase in proteasome-mediated protein degradation, with accelerated protein turnover per unit mass, suggesting activation of the proteasomal degradation pathway. Both nascent and long-lived proteins contribute to the elevated protein degradation during compensatory growth slowdown, with long-lived proteins playing a crucial role at the G1/S transition. Notably, large G1/S cells exhibit particularly high efficiency in protein degradation, surpassing that of similarly sized or larger cells in S and G2, coinciding with the timing of the most stringent size control in animal cells. These results collectively suggest that oversized cells reduce their growth efficiency by activating global proteasome-mediated protein degradation to promote cell size homeostasis.

Data availability

All data presented in this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Shixuan Liu

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    For correspondence
    shixuan@stanford.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4972-415X
  2. Ceryl Tan

    Cell Biology, Hospital for Sick Children, Toronto, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9010-9039
  3. Chloe Melo-Gavin

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  4. Miriam B Ginzberg

    Cell Biology, Hospital for Sick Children, Toronto, Canada
    Competing interests
    No competing interests declared.
  5. Ron Blutrich

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  6. Nish Patel

    Cell Biology, Hospital for Sick Children, Toronto, Canada
    Competing interests
    No competing interests declared.
  7. Michael Rape

    Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Michael Rape, Reviewing Editor eLife, founder and member of the scientific advisory board of Nurix Therapeutics, a member of the scientific advisory board of Monte Rosa Therapeutics, and an iPartner with The Column Group..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4849-6343
  8. Kevin G Mark

    Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  9. Ran Kafri

    Cell Biology, Hospital for Sick Children, Toronto, Canada
    For correspondence
    ran.kafri@sickkids.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9656-0189

Funding

Natural Sciences and Engineering Research Council of Canada (RGPIN-2015-05805)

  • Ran Kafri

Hospital for Sick Children (Restracomp Graduate Fellowship)

  • Shixuan Liu

Hospital for Sick Children (Restracomp Postdoc Fellowship)

  • Miriam B Ginzberg

University of Toronto (Open Fellowship)

  • Ceryl Tan

National Institute of General Medical Sciences (F32GM120956)

  • Kevin G Mark

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2025, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 602
    views
  • 125
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shixuan Liu
  2. Ceryl Tan
  3. Chloe Melo-Gavin
  4. Miriam B Ginzberg
  5. Ron Blutrich
  6. Nish Patel
  7. Michael Rape
  8. Kevin G Mark
  9. Ran Kafri
(2025)
Oversized cells activate global proteasome-mediated protein degradation to maintain cell size homeostasis
eLife 14:e75393.
https://doi.org/10.7554/eLife.75393

Share this article

https://doi.org/10.7554/eLife.75393

Further reading

    1. Cell Biology
    Yajun Zhai, Peiyi Liu ... Gongzheng Hu
    Research Article

    Discovering new strategies to combat the multidrug-resistant bacteria constitutes a major medical challenge of our time. Previously, artesunate (AS) has been reported to exert antibacterial enhancement activity in combination with β-lactam antibiotics via inhibition of the efflux pump AcrB. However, combination of AS and colistin (COL) revealed a weak synergistic effect against a limited number of strains, and few studies have further explored its possible mechanism of synergistic action. In this article, we found that AS and EDTA could strikingly enhance the antibacterial effects of COL against mcr-1- and mcr-1+ Salmonella strains either in vitro or in vivo, when used in triple combination. The excellent bacteriostatic effect was primarily related to the increased cell membrane damage, accumulation of toxic compounds and inhibition of MCR-1. The potential binding sites of AS to MCR-1 (THR283, SER284, and TYR287) were critical for its inhibition of MCR-1 activity. Additionally, we also demonstrated that the CheA of chemosensory system and virulence-related protein SpvD were critical for the bacteriostatic synergistic effects of the triple combination. Selectively targeting CheA, SpvD, or MCR using the natural compound AS could be further investigated as an attractive strategy for the treatment of Salmonella infection. Collectively, our work opens new avenues toward the potentiation of COL and reveals an alternative drug combination strategy to overcome COL-resistant bacterial infections.

    1. Cell Biology
    Tamás Visnovitz, Dorina Lenzinger ... Edit I Buzas
    Short Report

    Recent studies showed an unexpected complexity of extracellular vesicle (EV) biogenesis pathways. We previously found evidence that human colorectal cancer cells in vivo release large multivesicular body-like structures en bloc. Here, we tested whether this large EV type is unique to colorectal cancer cells. We found that all cell types we studied (including different cell lines and cells in their original tissue environment) released multivesicular large EVs (MV-lEVs). We also demonstrated that upon spontaneous rupture of the limiting membrane of the MV-lEVs, their intraluminal vesicles (ILVs) escaped to the extracellular environment by a ‘torn bag mechanism’. We proved that the MV-lEVs were released by ectocytosis of amphisomes (hence, we termed them amphiectosomes). Both ILVs of amphiectosomes and small EVs separated from conditioned media were either exclusively CD63 or LC3B positive. According to our model, upon fusion of multivesicular bodies with autophagosomes, fragments of the autophagosomal inner membrane curl up to form LC3B positive ILVs of amphisomes, while CD63 positive small EVs are of multivesicular body origin. Our data suggest a novel common release mechanism for small EVs, distinct from the exocytosis of multivesicular bodies or amphisomes, as well as the small ectosome release pathway.