Fracture healing is delayed in the absence of gasdermin - interleukin-1 signaling

  1. Kai Sun
  2. Chun Wang
  3. Jianqiu Xiao
  4. Michael D Brodt
  5. Luorongxin Yuan
  6. Tong Yang
  7. Yael Alippe
  8. Huimin Hu
  9. Dingjun Hao
  10. Yousef Abu-Amer
  11. Matthew J Silva
  12. Jie Shen
  13. Gabriel Mbalaviele  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. First Affiliated Hospital of Xi'an Jiaotong University, China

Abstract

Amino-terminal fragments from proteolytically cleaved gasdermins (GSDMs) form plasma membrane pores that enable the secretion of interleukin-1β (IL-1β) and IL-18. Excessive GSDM-mediated pore formation can compromise the integrity of the plasma membrane thereby causing the lytic inflammatory cell death, pyroptosis. We found that GSDMD and GSDME were the only GSDMs that were readily expressed in bone microenvironment. Therefore, we tested the hypothesis that GSDMD and GSDME are implicated in fracture healing owing to their role in the obligatory inflammatory response following injury. We found that bone callus volume and biomechanical properties of injured bones were significantly reduced in mice lacking either GSDM compared with wild-type (WT) mice, indicating that fracture healing was compromised in mutant mice. However, compound loss of GSDMD and GSDME did not exacerbate the outcomes, suggesting shared actions of both GSDMs in fracture healing. Mechanistically, bone injury induced IL-1β and IL-18 secretion in vivo, a response that was mimicked in vitro by bone debris and ATP, which function as inflammatory danger signals. Importantly, the secretion of these cytokines was attenuated in conditions of GSDMD deficiency. Finally, deletion of IL-1 receptor reproduced the phenotype of Gsdmd or Gsdme deficient mice, implying that inflammatory responses induced by the GSDM-IL-1 axis promote bone healing after fracture.

Data availability

All data generated or analy5ed during this study are included in the manuscript and supporting file; Source Data files have been provided for all figures.

Article and author information

Author details

  1. Kai Sun

    Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
  2. Chun Wang

    Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
  3. Jianqiu Xiao

    Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
  4. Michael D Brodt

    Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
  5. Luorongxin Yuan

    Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
  6. Tong Yang

    Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
  7. Yael Alippe

    Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
  8. Huimin Hu

    Department of Spine Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
    Competing interests
    No competing interests declared.
  9. Dingjun Hao

    Department of Spine Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
    Competing interests
    No competing interests declared.
  10. Yousef Abu-Amer

    Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    Yousef Abu-Amer, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5890-5086
  11. Matthew J Silva

    Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    No competing interests declared.
  12. Jie Shen

    Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    No competing interests declared.
  13. Gabriel Mbalaviele

    Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
    For correspondence
    gmbalaviele@WUSTL.EDU
    Competing interests
    Gabriel Mbalaviele, Consultant for Aclaris Therapeutics, Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4660-0952

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR076758)

  • Gabriel Mbalaviele

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR074992)

  • Matthew J Silva

National Institute of Allergy and Infectious Diseases (AI161022)

  • Gabriel Mbalaviele

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR075860)

  • Jie Shen

National Institute of Allergy and Infectious Diseases (AR077616)

  • Jie Shen

National Institute of Allergy and Infectious Diseases (AR077226)

  • Jie Shen

National Institute of Allergy and Infectious Diseases (AR049192)

  • Yousef Abu-Amer

National Institute of Allergy and Infectious Diseases (AR074992)

  • Yousef Abu-Amer

National Institute of Allergy and Infectious Diseases (AR072623)

  • Yousef Abu-Amer

Shriners Hospitals for Children (85160)

  • Yousef Abu-Amer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice were on the C57BL6J background, and genotyping was performed by PCR. All procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of Washington University School of Medicine in St. Louis. All experiments were performed in accordance with the relevant guidelines and regulations described in the IACUC- approved protocol 19-0971.

Copyright

© 2022, Sun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,230
    views
  • 220
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kai Sun
  2. Chun Wang
  3. Jianqiu Xiao
  4. Michael D Brodt
  5. Luorongxin Yuan
  6. Tong Yang
  7. Yael Alippe
  8. Huimin Hu
  9. Dingjun Hao
  10. Yousef Abu-Amer
  11. Matthew J Silva
  12. Jie Shen
  13. Gabriel Mbalaviele
(2022)
Fracture healing is delayed in the absence of gasdermin - interleukin-1 signaling
eLife 11:e75753.
https://doi.org/10.7554/eLife.75753

Share this article

https://doi.org/10.7554/eLife.75753

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.

    1. Immunology and Inflammation
    Hong Yu, Hiroshi Nishio ... Drew Pardoll
    Research Article

    The adaptive T cell response is accompanied by continuous rewiring of the T cell’s electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report in mice that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency in mice causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.