Single-cell transcriptomics of a dynamic cell behavior in murine airways

  1. Sheldon JJ Kwok
  2. Daniel T Montoro
  3. Adam L Haber
  4. Seok-Hyun Yun  Is a corresponding author
  5. Vladimir Vinarsky  Is a corresponding author
  1. LASE Innovation Inc, United States
  2. Broad Institute, United States
  3. Harvard Medical School, United States
  4. Massachusetts General Hospital, United States

Abstract

Despite advances in high-dimensional cellular analysis, the molecular profiling of dynamic behaviors of cells in their native environment remains a major challenge. We present a method that allows us to couple physiological behaviors of cells in an intact murine tissue to deep molecular profiling of individual cells. This method enabled us to establish a novel molecular signature for a striking migratory cellular behavior following injury in murine airways.

Data availability

Sequencing data have been deposited in GEO under accession code GSE193954.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Sheldon JJ Kwok

    LASE Innovation Inc, Cambridge, United States
    Competing interests
    Sheldon JJ Kwok, Currently an employee of and has financial interests in LASE Innovation Inc..
  2. Daniel T Montoro

    Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6222-2149
  3. Adam L Haber

    Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Seok-Hyun Yun

    Wellman Center for Photomedicine, Harvard Medical School, Cambridge, United States
    For correspondence
    seok-hyun_yun@hms.harvard.edu
    Competing interests
    Seok-Hyun Yun, Has financial interests in LASE Innovation Inc. that were reviewed and are managed by Massachusetts General Hospital and Mass General Brigham in accordance with their conflict-of-interest policies..
  5. Vladimir Vinarsky

    Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
    For correspondence
    vvinarsky@gmail.com
    Competing interests
    Vladimir Vinarsky, Currently an employee and has financial interest in Vertex Pharmaceuticals, Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1141-6434

Funding

National Heart, Lung, and Blood Institute (5P01HL120839)

  • Seok-Hyun Yun

National Heart, Lung, and Blood Institute (5F32HL154638)

  • Daniel T Montoro

National Institute of Biomedical Imaging and Bioengineering (P41EB015903)

  • Seok-Hyun Yun

National Institute of Biomedical Imaging and Bioengineering (P41EB015903)

  • Seok-Hyun Yun

National Cancer Institute (R01CA192878)

  • Seok-Hyun Yun

National Heart, Lung, and Blood Institute (K08HL124298)

  • Vladimir Vinarsky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were maintained in an Association for Assessment and Accreditation of Laboratory Animal Care-accredited animal facility at the Massachusetts General Hospital, and procedures were performed with Institutional Animal Care and Use Committee (IACUC)-approved protocol 2009N000119.

Copyright

© 2023, Kwok et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,912
    views
  • 197
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sheldon JJ Kwok
  2. Daniel T Montoro
  3. Adam L Haber
  4. Seok-Hyun Yun
  5. Vladimir Vinarsky
(2023)
Single-cell transcriptomics of a dynamic cell behavior in murine airways
eLife 12:e76645.
https://doi.org/10.7554/eLife.76645

Share this article

https://doi.org/10.7554/eLife.76645

Further reading

    1. Developmental Biology
    Mehmet Mahsum Kaplan, Erika Hudacova ... Ondrej Machon
    Research Article

    Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.