Fuzzy supertertiary interactions within PSD-95 enable ligand binding

  1. George L Hamilton
  2. Nabanita Saikia
  3. Sujit Basak
  4. Franceine S Welcome
  5. Fang Wu
  6. Jakub Kubiak
  7. Changcheng Zhang
  8. Yan Hao
  9. Claus AM Seidel
  10. Feng Ding  Is a corresponding author
  11. Hugo Sanabria  Is a corresponding author
  12. Mark E Bowen  Is a corresponding author
  1. Clemson University, United States
  2. Stony Brook University, United States
  3. Heinrich-Heine-University Düsseldorf, Germany
  4. Heinrich Heine University Düsseldorf, Germany

Abstract

The scaffold protein PSD-95 links postsynaptic receptors to sites of presynaptic neurotransmitter release. Flexible linkers between folded domains in PSD-95 enable a dynamic supertertiary structure. Interdomain interactions within the PSG supramodule, formed by PDZ3, SH3 and Guanylate Kinase domains, regulate PSD-95 activity. Here we combined Discrete Molecular Dynamics and single molecule FRET to characterize the PSG supramodule, with time resolution spanning picoseconds to seconds. We used a FRET network to measure distances in full-length PSD-95 and model the conformational ensemble. We found that PDZ3 samples two conformational basins, which we confirmed with disulfide mapping. To understand effects on activity, we measured binding of the synaptic adhesion protein neuroligin. We found that PSD-95 bound neuroligin well at physiological pH while truncated PDZ3 bound poorly. Our hybrid structural models reveal how the supertertiary context of PDZ3 enables recognition of this critical synaptic ligand.

Data availability

Datasets of FRET values from smTIRF have been uploaded as Figure 4-Source Data 1. The MATLAB scripts used to analyze smTIRF data have been uploaded as Source Code 1. Datasets from Confocal Microscopy with Multiparameter Fluorescence Detection (Raw, MFD Bursts, TCSPC, PDA, and FCS), along with structures used in generating simulated distances and DMD screening, are available at Zenodo (DOI: 10.5281/zenodo.6983428). Datasets from Discrete Molecular Dynamics are available at https://dlab.clemson.edu/research/PSD95-PSG/.

Article and author information

Author details

  1. George L Hamilton

    Department of Physics and Astronomy, Clemson University, Clemson, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nabanita Saikia

    Department of Physics and Astronomy, Clemson University, Clemson, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sujit Basak

    Department of Physiology and Biophysics, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Franceine S Welcome

    Department of Physiology and Biophysics, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Fang Wu

    Department of Physiology and Biophysics, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jakub Kubiak

    Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Changcheng Zhang

    Department of Physiology and Biophysics, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yan Hao

    Department of Physiology and Biophysics, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Claus AM Seidel

    Institute for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5171-149X
  10. Feng Ding

    Department of Physics and Astronomy, Clemson University, Clemson, United States
    For correspondence
    fding@clemson.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1850-6336
  11. Hugo Sanabria

    Department of Physics and Astronomy, Clemson University, Clemson, United States
    For correspondence
    hsanabr@clemson.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7068-6827
  12. Mark E Bowen

    Department of Physiology and Biophysics, Stony Brook University, Stony Brook, United States
    For correspondence
    mark.bowen@stonybrook.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9525-6986

Funding

National Institute of Mental Health (MH081923)

  • Mark E Bowen

National Institute of General Medical Sciences (GM130451)

  • Hugo Sanabria

National Institute of General Medical Sciences (GM119691)

  • Feng Ding

National Science Foundation (MCB1749778)

  • Hugo Sanabria

National Science Foundation (CBET1553945)

  • Feng Ding

European Research Council (671208)

  • George L Hamilton
  • Claus AM Seidel
  • Hugo Sanabria

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Hamilton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,484
    views
  • 363
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. George L Hamilton
  2. Nabanita Saikia
  3. Sujit Basak
  4. Franceine S Welcome
  5. Fang Wu
  6. Jakub Kubiak
  7. Changcheng Zhang
  8. Yan Hao
  9. Claus AM Seidel
  10. Feng Ding
  11. Hugo Sanabria
  12. Mark E Bowen
(2022)
Fuzzy supertertiary interactions within PSD-95 enable ligand binding
eLife 11:e77242.
https://doi.org/10.7554/eLife.77242

Share this article

https://doi.org/10.7554/eLife.77242

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Moritz Schloetter, Georg U Maret, Christoph J Kleineidam
    Research Article

    Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.