Abstract

Spermidine and other polyamines alleviate oxidative stress, yet excess spermidine seems toxic to Escherichia coli unless it is neutralized by SpeG, an enzyme for the spermidine N-acetyl transferase function. Thus, wild-type E. coli can tolerate applied exogenous spermidine stress, but DspeG strain of E. coli fails to do that. Here, using different ROS probes and performing electron paramagnetic resonance spectroscopy, we provide evidence that although spermidine mitigates oxidative stress by lowering overall ROS levels, excess of it simultaneously triggers the production of superoxide radicals, thereby causing toxicity in the DspeG strain. Furthermore, performing microarray experiment and other biochemical assays, we show that the spermidine-induced superoxide anions affected redox balance and iron homeostasis. Finally, we demonstrate that while RNA-bound spermidine inhibits iron oxidation, free spermidine interacts and oxidizes the iron to evoke superoxide radicals directly. Therefore, we propose that the spermidine-induced superoxide generation is one of the major causes of spermidine toxicity in E. coli.

Data availability

Microarray data is available in the GEO server. GEO accession Number GSE154618 has been provided in the material and method section.Source files for the following Figures were provided as a zip folder:Figure 1A, 1B, 1C, 1FFigure 2Figure 3A, 3B, 3C, 3D, 3E, 3F, 3GFigure 4B (ii), 4C, 4D, 4EFigure 5A, 5B, 5DFigure 6D, 6E, 6GFigure 1-figure supplement 1C

The following data sets were generated

Article and author information

Author details

  1. Vineet Kumar

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Rajesh Kumar Mishra

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Debarghya Ghose

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Arunima Kalita

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Pulkit Dhiman

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Anand Prakash

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  7. Nirja Thakur

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  8. Gopa Mitra

    Division of Molecular Medicine, St John's Medical College Hospital, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  9. Vinod D Chaudhari

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  10. Amit Arora

    CSIR Institute of Microbial Technology, Chandigarh, India
    For correspondence
    aarora.pgi@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3503-4695
  11. Dipak Dutta

    CSIR Institute of Microbial Technology, Chandigarh, India
    For correspondence
    dutta@imtech.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0458-4109

Funding

Council of Scientific and Industrial Research, India (MLP042)

  • Dipak Dutta

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kumar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,603
    views
  • 329
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vineet Kumar
  2. Rajesh Kumar Mishra
  3. Debarghya Ghose
  4. Arunima Kalita
  5. Pulkit Dhiman
  6. Anand Prakash
  7. Nirja Thakur
  8. Gopa Mitra
  9. Vinod D Chaudhari
  10. Amit Arora
  11. Dipak Dutta
(2022)
Free spermidine evokes superoxide radicals that manifest toxicity
eLife 11:e77704.
https://doi.org/10.7554/eLife.77704

Share this article

https://doi.org/10.7554/eLife.77704

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.