Community diversity is associated with intra-species genetic diversity and gene loss in the human gut microbiome

  1. Naïma Jesse Madi
  2. Daisy Chen
  3. Richard Wolff
  4. B Jesse Shapiro  Is a corresponding author
  5. Nandita R Garud  Is a corresponding author
  1. University of Montreal, Canada
  2. University of California, Los Angeles, United States
  3. McGill University, Canada

Abstract

The human gut microbiome contains a diversity of microbial species that varies in composition over time and across individuals. These species (and strains within species) can migrate across hosts and evolve by mutation and recombination within hosts. How the ecological process of community assembly interacts with intra-species diversity and evolutionary change is a longstanding question. Two contrasting hypotheses have been proposed based on ecological observations and theory: Diversity Begets Diversity (DBD), in which taxa tend to become more diverse in already diverse communities, and Ecological Controls (EC), in which higher community diversity impedes diversification within taxa. Previously, using 16S rRNA gene amplicon data across a range of environments, we showed a generally positive relationship between taxa diversity and community diversity at higher taxonomic levels, consistent with the predictions of DBD (Madi et al., 2020). However, this positive 'diversity slope' reaches a plateau at high levels of community diversity. Here we show that this general pattern holds at much finer genetic resolution, by analyzing intra-species strain and nucleotide variation in static and temporally sampled shotgun-sequenced fecal metagenomes from cohorts of healthy human hosts. We find that both intra-species polymorphism and strain number are positively correlated with community Shannon diversity. This trend is consistent with DBD, although we cannot exclude abiotic drivers of diversity. Shannon diversity is also predictive of increases in polymorphism over time scales up to ~4-6 months, after which the diversity slope flattens and then becomes negative-consistent with DBD eventually giving way to EC. Also supporting a complex mixture of DBD and EC, the number of strains per focal species is positively associated with Shannon diversity but negatively associated with richness. Finally, we show that higher community diversity predicts gene loss in a focal species at a future time point. This observation is broadly consistent with the Black Queen Hypothesis, which posits that genes with functions provided by the community are less likely to be retained in a focal species' genome. Together, our results show that a mixture of DBD, EC, and Black Queen may operate simultaneously in the human gut microbiome, adding to a growing body of evidence that these eco-evolutionary processes are key drivers of biodiversity and ecosystem function.

Data availability

The raw sequencing reads for the metagenomic samples used in this study were downloaded from Human Microbiome Project Consortium 2012 and Lloyd-Price et al. (2017) (URL: https://aws.amazon.com/datasets/human-microbiome-project/); and Poyet et al. 2019 (NCBI accession number PRJNA544527). All computer code for this paper is available at https://github.com/Naima16/DBD_in_gut_microbiome.

The following previously published data sets were used

Article and author information

Author details

  1. Naïma Jesse Madi

    Département de Sciences Biologiques, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Daisy Chen

    Computational and Systems Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6516-7029
  3. Richard Wolff

    Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. B Jesse Shapiro

    McGill University, Montreal, Canada
    For correspondence
    jesse.shapiro@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6819-8699
  5. Nandita R Garud

    Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    ngarud@ucla.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

Paul Allen Frontiers Group

  • Nandita R Garud

Research Corporation for Science Advancement

  • Nandita R Garud

Natural Sciences and Engineering Research Council of Canada

  • B Jesse Shapiro

Canada Research Chairs

  • B Jesse Shapiro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All human-derived samples used in this study were previously published. We include no additional identifiable or sensitive information.

Copyright

© 2023, Madi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,000
    views
  • 266
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Naïma Jesse Madi
  2. Daisy Chen
  3. Richard Wolff
  4. B Jesse Shapiro
  5. Nandita R Garud
(2023)
Community diversity is associated with intra-species genetic diversity and gene loss in the human gut microbiome
eLife 12:e78530.
https://doi.org/10.7554/eLife.78530

Share this article

https://doi.org/10.7554/eLife.78530

Further reading

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.

    1. Ecology
    Mercury Shitindo
    Insight

    Tracking wild pigs with GPS devices reveals how their social interactions could influence the spread of disease, offering new strategies for protecting agriculture, wildlife, and human health.