Glycine inhibits NINJ1 membrane clustering to suppress plasma membrane rupture in cell death

  1. Jazlyn P Borges
  2. Ragnhild SR Sætra
  3. Allen Volchuk
  4. Marit Bugge
  5. Pascal Devant
  6. Bjørnar Sporsheim
  7. Bridget R Kilburn
  8. Charles L Evavold
  9. Jonathan C Kagan
  10. Neil M Goldenberg
  11. Trude Helen Flo
  12. Benjamin Ethan Steinberg  Is a corresponding author
  1. Hospital for Sick Children, Canada
  2. Norwegian University of Science and Technology, Norway
  3. Boston Children's Hospital, United States
  4. Ragon Institute of MGH, MIT and Harvard, United States

Abstract

First recognized more than 30 years ago, glycine protects cells against rupture from diverse types of injury. This robust and widely observed effect has been speculated to target a late downstream process common to multiple modes of tissue injury. The molecular target of glycine that mediates cytoprotection, however, remains elusive. Here, we show that glycine works at the level of NINJ1, a newly identified executioner of plasma membrane rupture in pyroptosis, necrosis, and post-apoptosis lysis. NINJ1 is thought to cluster within the plasma membrane to cause cell rupture. We demonstrate that the execution of pyroptotic cell rupture is similar for human and mouse NINJ1, and that NINJ1 knockout functionally and morphologically phenocopies glycine cytoprotection in macrophages undergoing lytic cell death. Next, we show that glycine prevents NINJ1 clustering by either direct or indirect mechanisms. In pyroptosis, glycine preserves cellular integrity but does not affect upstream inflammasome activities or accompanying energetic cell death. By positioning NINJ1 clustering as a glycine target, our data resolve a long-standing mechanism for glycine-mediated cytoprotection. This new understanding will inform the development of cell preservation strategies to counter pathologic lytic cell death.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files, which includes the source data for the manuscript figures.

Article and author information

Author details

  1. Jazlyn P Borges

    Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Ragnhild SR Sætra

    Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8248-0460
  3. Allen Volchuk

    Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Marit Bugge

    Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. Pascal Devant

    Division of Gastroenterology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Bjørnar Sporsheim

    Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  7. Bridget R Kilburn

    Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0171-9370
  8. Charles L Evavold

    Ragon Institute of MGH, MIT and Harvard, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jonathan C Kagan

    Division of Gastroenterology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2364-2746
  10. Neil M Goldenberg

    Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2785-1852
  11. Trude Helen Flo

    Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2569-0381
  12. Benjamin Ethan Steinberg

    Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
    For correspondence
    benjamin.steinberg@sickkids.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3070-0548

Funding

International Anesthesia Research Society (Mentored Research Award)

  • Benjamin Ethan Steinberg

Department of Anesthesiology and Pain Medicine, University of Toronto (Early Investigator Award)

  • Benjamin Ethan Steinberg

Research Council of Norway (287696,223255)

  • Trude Helen Flo

Ragon Institute of MGH, MIT and Harvard (Ragon Early Independence Fellowship)

  • Charles L Evavold

National Institutes of Health (AI133524,AI093589,AI116550,and P30DK3485)

  • Jonathan C Kagan

Boehringer Ingelheim Fonds (PhD Fellowship)

  • Pascal Devant

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were approved by the Hospital for Sick Children Animal Care Committee (AUP #47781).

Human subjects: All human studies were conducted according to the principles expressed in the Helsinki Declaration and approved by the Regional Committee for Medical and Health Research Ethics (No. 2009/2245). Informed consent was obtained from all subjects prior to sample collection.

Copyright

© 2022, Borges et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,969
    views
  • 933
    downloads
  • 78
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jazlyn P Borges
  2. Ragnhild SR Sætra
  3. Allen Volchuk
  4. Marit Bugge
  5. Pascal Devant
  6. Bjørnar Sporsheim
  7. Bridget R Kilburn
  8. Charles L Evavold
  9. Jonathan C Kagan
  10. Neil M Goldenberg
  11. Trude Helen Flo
  12. Benjamin Ethan Steinberg
(2022)
Glycine inhibits NINJ1 membrane clustering to suppress plasma membrane rupture in cell death
eLife 11:e78609.
https://doi.org/10.7554/eLife.78609

Share this article

https://doi.org/10.7554/eLife.78609

Further reading

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.