Novel fast pathogen diagnosis method for severe pneumonia patients in the intensive care unit: randomized clinical trial

Abstract

Background:

Severe pneumonia is one of the common acute diseases caused by pathogenic bacteria infection, especially by pathogenic bacteria, leading to sepsis with a high morbidity and mortality rate. However, the existing bacteria cultivation method cannot satisfy current clinical needs requiring rapid identification of bacteria strain for antibiotic selection. Therefore, developing a sensitive liquid biopsy system demonstrates the enormous value of detecting pathogenic bacterium species in pneumonia patients.

Methods:

In this study, we developed a tool named Species-Specific Bacterial Detector (SSBD, pronounce as "speed") for detecting selected bacterium. Newly designed diagnostic tools combining specific DNA-tag screened by our algorithm and CRISPR/Cas12a, which were first tested in the lab to confirm the accuracy, followed by validating its specificity and sensitivity via applying on bronchoalveolar lavage fluid (BALF) from pneumonia patients. In the validation I stage, we compared the SSBD results with traditional cultivation results. In the validation II stage, a randomized and controlled clinical trial was completed at the ICU of Nanjing Drum Tower Hospital to evaluate the benefit SSBD brought to the treatment.

Results:

In the validation stage I, 77 BALF samples were tested, and SSBD could identify designated organisms in 4 hours with almost 100% sensitivity and over 87% specific rate. In validation stage II, the SSBD results were obtained in 4 hours, leading to better APACHE II scores (p=0.0035, ANOVA test). Based on the results acquired by SSBD, cultivation results could deviate from the real pathogenic situation with polymicrobial infections. In addition, nosocomial infections were found widely in ICU, which should deserve more attention.

Funding:

National Natural Science Foundation of China. The National Key Scientific Instrument and Equipment Development Project. Project number: 81927808.

Clinical trial:

This study was registered at ClinicalTrilas.gov (NCT04178382).

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 3-5, Appendix figures 2-5, and Appendix tables 3-9.

Article and author information

Author details

  1. Yan Wang

    Department of Critical Care Medicine, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiaohui Liang

    The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yuqian Jiang

    The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Danjiang Dong

    Department of Critical Care Medicine, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Cong Zhang

    The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Tianqiang Song

    The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Ming Chen

    Department of Critical Care Medicine, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Yong You

    Department of Critical Care Medicine, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Han Liu

    Department of Critical Care Medicine, Nanjing Medical University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Min Ge

    Department of Cardiothoracic Surgery Intensive Care Unit, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Haibin Dai

    Department of Neurosurgery Intensive Care Unit, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Fengchan Xi

    Research Institute of General Surgery, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Wanqing Zhou

    Department of Laboratory Medicine, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Jian-Qun Chen

    The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Qiang Wang

    The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
    For correspondence
    wangq@nju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2907-9851
  16. Qihan Chen

    The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
    For correspondence
    chenqihan@nju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0062-8434
  17. Wenkui Yu

    Department of Critical Care Medicine, Nanjing University, Nanjing, China
    For correspondence
    yudrnj@nju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4218-0321

Funding

National Natural Science Foundation of China (The National Key Scientific Instrument and Equipment Development Project,81927808)

  • Wenkui Yu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: We acquired the ethics approval (2019-197-01) from the ethics committee of Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School in July 2019, registered and posted the complete research protocol, informed consent, subject materials, case report form, researcher manual, the introduction of main researchers and other information in Chinese. Later on, this study was registered in English at ClinicalTrilas.gov (NCT04178382) in November 2019.

Copyright

© 2022, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,023
    views
  • 320
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yan Wang
  2. Xiaohui Liang
  3. Yuqian Jiang
  4. Danjiang Dong
  5. Cong Zhang
  6. Tianqiang Song
  7. Ming Chen
  8. Yong You
  9. Han Liu
  10. Min Ge
  11. Haibin Dai
  12. Fengchan Xi
  13. Wanqing Zhou
  14. Jian-Qun Chen
  15. Qiang Wang
  16. Qihan Chen
  17. Wenkui Yu
(2022)
Novel fast pathogen diagnosis method for severe pneumonia patients in the intensive care unit: randomized clinical trial
eLife 11:e79014.
https://doi.org/10.7554/eLife.79014

Share this article

https://doi.org/10.7554/eLife.79014

Further reading

    1. Medicine
    Gabriel O Heckerman, Eileen Tzng ... Adrienne Mueller
    Research Article

    Background: Several fields have described low reproducibility of scientific research and poor accessibility in research reporting practices. Although previous reports have investigated accessible reporting practices that lead to reproducible research in other fields, to date, no study has explored the extent of accessible and reproducible research practices in cardiovascular science literature.

    Methods: To study accessibility and reproducibility in cardiovascular research reporting, we screened 639 randomly selected articles published in 2019 in three top cardiovascular science publications: Circulation, the European Heart Journal, and the Journal of the American College of Cardiology (JACC). Of those 639 articles, 393 were empirical research articles. We screened each paper for accessible and reproducible research practices using a set of accessibility criteria including protocol, materials, data, and analysis script availability, as well as accessibility of the publication itself. We also quantified the consistency of open research practices within and across cardiovascular study types and journal formats.

    Results: We identified that fewer than 2% of cardiovascular research publications provide sufficient resources (materials, methods, data, and analysis scripts) to fully reproduce their studies. Of the 639 articles screened, 393 were empirical research studies for which reproducibility could be assessed using our protocol, as opposed to commentaries or reviews. After calculating an accessibility score as a measure of the extent to which an article makes its resources available, we also showed that the level of accessibility varies across study types with a score of 0.08 for Case Studies or Case Series and 0.39 for Clinical Trials (p = 5.500E-5) and across journals (0.19 through 0.34, p = 1.230E-2). We further showed that there are significant differences in which study types share which resources.

    Conclusion: Although the degree to which reproducible reporting practices are present in publications varies significantly across journals and study types, current cardiovascular science reports frequently do not provide sufficient materials, protocols, data, or analysis information to reproduce a study. In the future, having higher standards of accessibility mandated by either journals or funding bodies will help increase the reproducibility of cardiovascular research.

    Funding: Authors Gabriel Heckerman, Arely Campos-Melendez, and Chisomaga Ekwueme were supported by an NIH R25 grant from the National Heart, Lung and Blood Institute (R25HL147666). Eileen Tzng was supported by an AHA Institutional Training Award fellowship (18UFEL33960207).

    1. Cell Biology
    2. Medicine
    Pengbo Chen, Bo Li ... Xinfeng Zheng
    Research Article

    Background:

    It has been reported that loss of PCBP2 led to increased reactive oxygen species (ROS) production and accelerated cell aging. Knockdown of PCBP2 in HCT116 cells leads to significant downregulation of fibroblast growth factor 2 (FGF2). Here, we tried to elucidate the intrinsic factors and potential mechanisms of bone marrow mesenchymal stromal cells (BMSCs) aging from the interactions among PCBP2, ROS, and FGF2.

    Methods:

    Unlabeled quantitative proteomics were performed to show differentially expressed proteins in the replicative senescent human bone marrow mesenchymal stromal cells (RS-hBMSCs). ROS and FGF2 were detected in the loss-and-gain cell function experiments of PCBP2. The functional recovery experiments were performed to verify whether PCBP2 regulates cell function through ROS/FGF2-dependent ways.

    Results:

    PCBP2 expression was significantly lower in P10-hBMSCs. Knocking down the expression of PCBP2 inhibited the proliferation while accentuated the apoptosis and cell arrest of RS-hBMSCs. PCBP2 silence could increase the production of ROS. On the contrary, overexpression of PCBP2 increased the viability of both P3-hBMSCs and P10-hBMSCs significantly. Meanwhile, overexpression of PCBP2 led to significantly reduced expression of FGF2. Overexpression of FGF2 significantly offset the effect of PCBP2 overexpression in P10-hBMSCs, leading to decreased cell proliferation, increased apoptosis, and reduced G0/G1 phase ratio of the cells.

    Conclusions:

    This study initially elucidates that PCBP2 as an intrinsic aging factor regulates the replicative senescence of hBMSCs through the ROS-FGF2 signaling axis.

    Funding:

    This study was supported by the National Natural Science Foundation of China (82172474).