Adaptive Immunity: Maintaining naivety of T cells
Adaptive immunity develops with exposure to pathogens. Unlike the innate immune system, which supplies a fast, general response against threats, the adaptive immune system can recognise and remember specific pathogens, thus providing a long-lasting protection against infections. Its key components, B and T cells, can specifically target the germs causing an infection. However, before these cells can attack specific pathogens, they need to encounter a molecule, known as an antigen, which they recognise and respond to. Until then, these cells are ‘naive’.
Naive T cells are produced in the thymus, an organ that shrinks with age. As the thymus becomes smaller, the number of newly produced naive T cells declines rapidly; however, the body is somehow able to maintain a source of naive T cells throughout its life. So far, it has been unclear how the body does this. A population of cells that has no external source of new cells and is subject to death can be sustained by two intrinsic processes: the remaining cells can adjust their division rates to replace lost cells; or they can die less frequently by extending their lifespan.
As with many areas in biology, studying the immune system is challenging, due to its inherent complexity. Immune cells are motile and can be found in many organs. Moreover, an acute adaptive immune response mobilises many cellular actors, and their offspring can still be active for extended periods following infection. Experimental set ups often lack the ability to monitor all of these factors continuously. Now, in eLife, Sanket Rane (Columbia University), Thea Hogan (University College London; UCL), Edward Lee (Yale University), Benedict Seddon (UCL) and Andrew Yates (Columbia) report on mathematical models that can bridge the gap (Rane et al., 2022).
To question how naive T cell populations in mice are maintained throughout life, and how host age, cell age and cell numbers influence both the proliferation and decrease of naive T cells, the researchers developed mathematical models of the number of cells and their different types. Data from various experimental systems were analysed and several competing hypotheses evaluated.
T cells can be divided into two varieties that can be distinguished by the type of transmembrane glycoprotein they express: CD4+T cells increase the activity of other immune cells by releasing cytokines, while cytotoxic CD8+T cells are involved in killing infected cells and their pathogens. The models revealed that both types of cell appear to be able to regulate their lifespan independently from external factors, dividing rarely in adult mice, and living longer as the mice get older. The model accurately predicted the population dynamics of CD4+T cells in both young and adult mice. However, CD8+T cells appear to have distinct dynamics in newborn mice up to three weeks of age, which seem to lose CD8+T cells at a higher rates than adult mice. These results support a traditional understanding in which the thymus drives the maintenance of a naive T cell pool early on, while later in life, cells regulate their survival rates independently.
As with all scientific studies, there are some caveats that highlight the need for further investigation. First, even if data appear to be consistent with a hypothesis, it does not mean that the hypothesis is true – merely that there is insufficient evidence to reject it. As new data become available, accepted hypotheses should be re-challenged. However, one of the advantages of the statistical approach taken by Rane et al. is that additional predictions from the mathematical models can be readily made, facilitating any further re-examination in light of new data.
Second, the data used throughout the analyses were obtained from laboratory mice living in a sterile environment. In the wild, however, mice are exposed to a wide range of naturally occurring infections. The response to these pathogens results in a far more mature immune system with a substantial immune memory, which may have implications for naive populations (Willyard, 2018; Rosshart et al., 2019).
Lastly, it remains to be seen if the findings obtained from studies in mice also apply to humans. This is particularly relevant here, as evidence suggests that the maintenance of naive T cells may differ fundamentally between the two species (den Braber et al., 2012). Regardless, the scientific method used by Rane et al. is certain to make a significant contribution towards a better understanding of human cell dynamics.
References
Article and author information
Author details
Publication history
Copyright
© 2022, Duffy
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 641
- views
-
- 98
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
Plasmid construction is central to life science research, and sequence verification is arguably its costliest step. Long-read sequencing has emerged as a competitor to Sanger sequencing, with the principal benefit that whole plasmids can be sequenced in a single run. Nevertheless, the current cost of nanopore sequencing is still prohibitive for routine sequencing during plasmid construction. We develop a computational approach termed Simple Algorithm for Very Efficient Multiplexing of Oxford Nanopore Experiments for You (SAVEMONEY) that guides researchers to mix multiple plasmids and subsequently computationally de-mixes the resultant sequences. SAVEMONEY defines optimal mixtures in a pre-survey step, and following sequencing, executes a post-analysis workflow involving sequence classification, alignment, and consensus determination. By using Bayesian analysis with prior probability of expected plasmid construction error rate, high-confidence sequences can be obtained for each plasmid in the mixture. Plasmids differing by as little as two bases can be mixed as a single sample for nanopore sequencing, and routine multiplexing of even six plasmids per 180 reads can still maintain high accuracy of consensus sequencing. SAVEMONEY should further democratize whole-plasmid sequencing by nanopore and related technologies, driving down the effective cost of whole-plasmid sequencing to lower than that of a single Sanger sequencing run.
-
- Biochemistry and Chemical Biology
- Computational and Systems Biology
Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.