Discrete GPCR-triggered endocytic modes enable β-arrestins to flexibly regulate cell signaling

  1. Benjamin Barsi-Rhyne
  2. Aashish Manglik  Is a corresponding author
  3. Mark von Zastrow  Is a corresponding author
  1. University of California, San Francisco, United States

Abstract

β-arrestins are master regulators of cellular signaling that operate by desensitizing ligand-activated G protein-coupled receptors (GPCRs) at the plasma membrane and promoting their subsequent endocytosis. The endocytic activity of β-arrestins is ligand-dependent, triggered by GPCR binding, and increasingly recognized to have a multitude of downstream signaling and trafficking consequences that are specifically programmed by the bound GPCR. However, only one biochemical 'mode' for GPCR-mediated triggering of the endocytic activity is presently known- displacement of the β-arrestin C-terminus (CT) to expose CCP-binding determinants that are masked in the inactive state. Here we revise this view by uncovering a second mode of GPCR-triggered endocytic activity that is independent of the β-arrestin CT and, instead, requires the cytosolic base of the β-arrestin C-lobe (CLB). We further show each of the discrete endocytic modes is triggered in a receptor-specific manner, with GPCRs that bind β-arrestin transiently ('class A') primarily triggering the CLB-dependent mode and GPCRs that bind more stably ('class B') triggering both the CT and CLB -dependent modes in combination. Moreover, we show that different modes have opposing effects on the net signaling output of receptors- with the CLB-dependent mode promoting rapid signal desensitization and the CT-dependent mode enabling prolonged signaling. Together, these results fundamentally revise understanding of how β-arrestins operate as efficient endocytic adaptors while facilitating diversity and flexibility in the control of cell signaling.

Data availability

All numerical data used to generate the figures has been included in the supporting data file. Source data for each figure panel is included as a separate worksheet in the combined excel document.

Article and author information

Author details

  1. Benjamin Barsi-Rhyne

    Tetrad Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Aashish Manglik

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    For correspondence
    Aashish.Manglik@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark von Zastrow

    Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, United States
    For correspondence
    mark.vonzastrow@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1375-6926

Funding

NIH Office of the Director (DP5OD023048)

  • Aashish Manglik

National Institutes of Health (R01DA010711)

  • Mark von Zastrow

National Institutes of Health (R01DA012864)

  • Mark von Zastrow

American Heart Association (19PRE34380570)

  • Benjamin Barsi-Rhyne

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Barsi-Rhyne et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,686
    views
  • 514
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin Barsi-Rhyne
  2. Aashish Manglik
  3. Mark von Zastrow
(2022)
Discrete GPCR-triggered endocytic modes enable β-arrestins to flexibly regulate cell signaling
eLife 11:e81563.
https://doi.org/10.7554/eLife.81563

Share this article

https://doi.org/10.7554/eLife.81563

Further reading

    1. Cell Biology
    Weihua Wang, Junqiao Xing ... Zhangfeng Hu
    Research Article

    Existence of cilia in the last eukaryotic common ancestor raises a fundamental question in biology: how the transcriptional regulation of ciliogenesis has evolved? One conceptual answer to this question is by an ancient transcription factor regulating ciliary gene expression in both uni- and multicellular organisms, but examples of such transcription factors in eukaryotes are lacking. Previously, we showed that an ancient transcription factor X chromosome-associated protein 5 (Xap5) is required for flagellar assembly in Chlamydomonas. Here, we show that Xap5 and Xap5-like (Xap5l) are two conserved pairs of antagonistic transcription regulators that control ciliary transcriptional programs during spermatogenesis. Male mice lacking either Xap5 or Xap5l display infertility, as a result of meiotic prophase arrest and sperm flagella malformation, respectively. Mechanistically, Xap5 positively regulates the ciliary gene expression by activating the key regulators including Foxj1 and Rfx families during the early stage of spermatogenesis. In contrast, Xap5l negatively regulates the expression of ciliary genes via repressing these ciliary transcription factors during the spermiogenesis stage. Our results provide new insights into the mechanisms by which temporal and spatial transcription regulators are coordinated to control ciliary transcriptional programs during spermatogenesis.

    1. Cell Biology
    Hyunggu Hahn, Carole Daly ... Alex RB Thomsen
    Research Article

    Chemokine receptors are GPCRs that regulate the chemotactic migration of a wide variety of cells including immune and cancer cells. Most chemokine receptors contain features associated with the ability to stimulate G protein signaling during β-arrestin-mediated receptor internalization into endosomes. As endosomal signaling of certain non-GPCR receptors plays a major role in cell migration, we chose to investigate the potential role of endosomal chemokine receptor signaling on mechanisms governing this function. Applying a combination of pharmacological and cell biological approaches, we demonstrate that the model chemokine receptor CCR7 recruits G protein and β-arrestin simultaneously upon chemokine stimulation, which enables internalized receptors to activate G protein from endosomes. Furthermore, spatiotemporal-resolved APEX2 proteome profiling shows that endosomal CCR7 uniquely enriches specific Rho GTPase regulators as compared to plasma membrane CCR7, which is directly associated with enhanced activity of the Rho GTPase Rac1 and chemotaxis of immune T cells. As Rac1 drives the formation of membrane protrusions during chemotaxis, our findings suggest an important integrated function of endosomal chemokine receptor signaling in cell migration.