Coevolution-based prediction of key allosteric residues for protein function regulation

  1. Juan Xie
  2. Weilin Zhang
  3. Xiaolei Zhu
  4. Minghua Deng
  5. Luhua Lai  Is a corresponding author
  1. Peking University, China
  2. Anhui Agricultural University, China

Abstract

Allostery is fundamental to many biological processes. Due to the distant regulation nature, how allosteric mutations, modifications and effector binding impact protein function is difficult to forecast. In protein engineering, remote mutations cannot be rationally designed without large-scale experimental screening. Allosteric drugs have raised much attention due to their high specificity and possibility of overcoming existing drug-resistant mutations. However, optimization of allosteric compounds remains challenging. Here, we developed a novel computational method KeyAlloSite to predict allosteric site and to identify key allosteric residues (allo-residues) based on the evolutionary coupling model. We found that protein allosteric sites are strongly coupled to orthosteric site compared to non-functional sites. We further inferred key allo-residues by pairwise comparing the difference of evolutionary coupling scores of each residue in the allosteric pocket with the functional site. Our predicted key allo-residues are in accordance with previous experimental studies for typical allosteric proteins like BCR-ABL1, Tar and PDZ3, as well as key cancer mutations. We also showed that KeyAlloSite can be used to predict key allosteric residues distant from the catalytic site that are important for enzyme catalysis. Our study demonstrates that weak coevolutionary couplings contain important information of protein allosteric regulation function. KeyAlloSite can be applied in studying the evolution of protein allosteric regulation, designing and optimizing allosteric drugs, performing functional protein design and enzyme engineering.

Data availability

All data that support the results of this study are included in the manuscript, supplementary files, and GitHub repository(https://github.com/huilan1210/KeyAlloSite). Source Data files have been provided for all Figures(except Figure 6 and Figure 1-figure supplement 1).

The following previously published data sets were used

Article and author information

Author details

  1. Juan Xie

    Center for Quantitative Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Weilin Zhang

    College of Chemistry and Molecular Engineering, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaolei Zhu

    School of Sciences, Anhui Agricultural University, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Minghua Deng

    Center for Quantitative Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Luhua Lai

    College of Chemistry and Molecular Engineering, Peking University, Beijing, China
    For correspondence
    lhlai@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8343-7587

Funding

National Key R&D Program of China (2022YFA1303700)

  • Luhua Lai

National Natural Science Foundation of China (21633001,22237002)

  • Luhua Lai

Chinese Academy of Medical Sciences (2021-I2M-5-014)

  • Luhua Lai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Xie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,933
    views
  • 493
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juan Xie
  2. Weilin Zhang
  3. Xiaolei Zhu
  4. Minghua Deng
  5. Luhua Lai
(2023)
Coevolution-based prediction of key allosteric residues for protein function regulation
eLife 12:e81850.
https://doi.org/10.7554/eLife.81850

Share this article

https://doi.org/10.7554/eLife.81850

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yamato Niitani, Kohei Matsuzaki ... Michio Tomishige
    Research Article

    The two identical motor domains (heads) of dimeric kinesin-1 move in a hand-over-hand process along a microtubule, coordinating their ATPase cycles such that each ATP hydrolysis is tightly coupled to a step and enabling the motor to take many steps without dissociating. The neck linker, a structural element that connects the two heads, has been shown to be essential for head–head coordination; however, which kinetic step(s) in the chemomechanical cycle is ‘gated’ by the neck linker remains unresolved. Here, we employed pre-steady-state kinetics and single-molecule assays to investigate how the neck-linker conformation affects kinesin’s motility cycle. We show that the backward-pointing configuration of the neck linker in the front kinesin head confers higher affinity for microtubule, but does not change ATP binding and dissociation rates. In contrast, the forward-pointing configuration of the neck linker in the rear kinesin head decreases the ATP dissociation rate but has little effect on microtubule dissociation. In combination, these conformation-specific effects of the neck linker favor ATP hydrolysis and dissociation of the rear head prior to microtubule detachment of the front head, thereby providing a kinetic explanation for the coordinated walking mechanism of dimeric kinesin.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    A Sofia F Oliveira, Fiona L Kearns ... Adrian J Mulholland
    Short Report

    The spike protein is essential to the SARS-CoV-2 virus life cycle, facilitating virus entry and mediating viral-host membrane fusion. The spike contains a fatty acid (FA) binding site between every two neighbouring receptor-binding domains. This site is coupled to key regions in the protein, but the impact of glycans on these allosteric effects has not been investigated. Using dynamical nonequilibrium molecular dynamics (D-NEMD) simulations, we explore the allosteric effects of the FA site in the fully glycosylated spike of the SARS-CoV-2 ancestral variant. Our results identify the allosteric networks connecting the FA site to functionally important regions in the protein, including the receptor-binding motif, an antigenic supersite in the N-terminal domain, the fusion peptide region, and another allosteric site known to bind heme and biliverdin. The networks identified here highlight the complexity of the allosteric modulation in this protein and reveal a striking and unexpected link between different allosteric sites. Comparison of the FA site connections from D-NEMD in the glycosylated and non-glycosylated spike revealed that glycans do not qualitatively change the internal allosteric pathways but can facilitate the transmission of the structural changes within and between subunits.