Theoretical analysis reveals a role for RAF conformational autoinhibition in paradoxical activation

  1. Gaurav Mendiratta
  2. Edward Stites  Is a corresponding author
  1. Salk Institute for Biological Studies, United States
  2. Yale University, United States

Abstract

RAF kinase inhibitors can, under certain conditions, increase RAF kinase signaling. This process, which is commonly referred to as 'paradoxical activation' (PA), is incompletely understood. We use mathematical and computational modeling to investigate PA, and we derive rigorous analytical expressions that illuminate the underlying mechanism of this complex phenomenon. We find that conformational autoinhibition modulation by a RAF inhibitor could be sufficient to create PA. We find that experimental RAF-inhibitor drug dose response data that characterize PA across different types of RAF inhibitors are best explained by a model that includes RAF-inhibitor modulation of three properties: conformational autoinhibition, dimer affinity, and drug binding within the dimer (i.e., negative cooperativity). Overall, this work establishes conformational autoinhibition as a robust mechanism for RAF-inhibitor driven PA based solely on equilibrium dynamics of canonical interactions that comprise RAF signaling and inhibition.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper or the Supplementary Materials. All materials are available upon request from the corresponding author.

Article and author information

Author details

  1. Gaurav Mendiratta

    Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5091-348X
  2. Edward Stites

    Department of Laboratory Medicine, Yale University, New Haven, United States
    For correspondence
    edward.stites@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3783-7336

Funding

National Institutes of Health (K22CA216318)

  • Edward Stites

National Institutes of Health (DP2AT011327)

  • Edward Stites

Melanoma Research Alliance (Young Investigator Award)

  • Edward Stites

Joe W. and Dorothy Dorsett Brown Foundation (N/A)

  • Edward Stites

Salk Institute for Biological Studies

  • Gaurav Mendiratta

Conrad Prebys Foundation (N/A)

  • Edward Stites

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Mendiratta & Stites

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 943
    views
  • 157
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gaurav Mendiratta
  2. Edward Stites
(2023)
Theoretical analysis reveals a role for RAF conformational autoinhibition in paradoxical activation
eLife 12:e82739.
https://doi.org/10.7554/eLife.82739

Share this article

https://doi.org/10.7554/eLife.82739

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Flavia A Zanetti, Ignacio Fernandez ... Laura Ruth Delgui
    Research Article

    Birnaviruses are a group of double-stranded RNA (dsRNA) viruses infecting birds, fish, and insects. Early endosomes (EE) constitute the platform for viral replication. Here, we study the mechanism of birnaviral targeting of EE membranes. Using the Infectious Bursal Disease Virus (IBDV) as a model, we validate that the viral protein 3 (VP3) binds to phosphatidylinositol-3-phosphate (PI3P) present in EE membranes. We identify the domain of VP3 involved in PI3P-binding, named P2 and localized in the core of VP3, and establish the critical role of the arginine at position 200 (R200), conserved among all known birnaviruses. Mutating R200 abolishes viral replication. Moreover, we propose a two-stage modular mechanism for VP3 association with EE. Firstly, the carboxy-terminal region of VP3 adsorbs on the membrane, and then the VP3 core reinforces the membrane engagement by specifically binding PI3P through its P2 domain, additionally promoting PI3P accumulation.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.