Myosin II regulatory light chain phosphorylation and formin availability modulate cytokinesis upon changes in carbohydrate metabolism

Abstract

Cytokinesis, the separation of daughter cells at the end of mitosis, relies in animal cells on a contractile actomyosin ring (CAR) composed of actin and class II myosins, whose activity is strongly influenced by regulatory light chain (RLC) phosphorylation. However, in simple eukaryotes such as the fission yeast Schizosaccharomyces pombe, RLC phosphorylation appears dispensable for regulating CAR dynamics. We found that redundant phosphorylation at Ser35 of the S. pombe RLC homolog Rlc1 by the p21-activated kinases Pak1 and Pak2, modulates myosin II Myo2 activity and becomes essential for cytokinesis and cell growth during respiration. Previously, we showed that the stress activated protein kinase pathway (SAPK) MAPK Sty1 controls fission yeast CAR integrity by downregulating formin For3 levels (Gomez-Gil et al.,2020). Here, we report that the reduced availability of formin For3-nucleated actin filaments for the CAR is the main reason for the required control of myosin II contractile activity by RLC phosphorylation during respiration-induced oxidative stress. Thus, the restoration of For3 levels by antioxidants overrides the control of myosin II function regulated by RLC phosphorylation, allowing cytokinesis and cell proliferation during respiration. Therefore, fine-tuned interplay between myosin II function through Rlc1 phosphorylation and environmentally controlled actin filament availability is critical for a successful cytokinesis in response to a switch to a respiratory carbohydrate metabolism.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Francisco Prieto-Ruiz

    Department of Genetics and Microbiology, Universidad de Murcia, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Elisa Gómez-Gil

    Department of Genetics and Microbiology, Universidad de Murcia, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Rebeca Martín-García

    Instituto de Biología Funcional y Genómica, Universidad de Salamanca, Salamanca, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Armando Jesus Perez-Diaz

    Department of Genetics and Microbiology, Universidad de Murcia, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5494-0087
  5. Jero Vicente-Soler

    Department of Genetics and Microbiology, Universidad de Murcia, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8759-6545
  6. Alejandro Franco

    Department of Genetics and Microbiology, Universidad de Murcia, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7461-3414
  7. Teresa Soto

    Department of Genetics and Microbiology, Universidad de Murcia, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2965-318X
  8. Pilar Pérez

    Instituto de Biología Funcional y Genómica, Universidad de Salamanca, Salamanca, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Marisa Madrid

    Department of Genetics and Microbiology, Universidad de Murcia, Murcia, Spain
    For correspondence
    marisa@um.es
    Competing interests
    The authors declare that no competing interests exist.
  10. Jose Cansado

    Department of Genetics and Microbiology, Universidad de Murcia, Murcia, Spain
    For correspondence
    jcansado@um.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2342-8152

Funding

Agencia Estatal de Investigación (PID2020-112569GB-I00)

  • Jose Cansado

Agencia Estatal de Investigación (PGC2018-098924-B-I00)

  • Pilar Pérez

Regional Government of Castile and Leon (CSI150P20)

  • Pilar Pérez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Prieto-Ruiz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,217
    views
  • 186
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francisco Prieto-Ruiz
  2. Elisa Gómez-Gil
  3. Rebeca Martín-García
  4. Armando Jesus Perez-Diaz
  5. Jero Vicente-Soler
  6. Alejandro Franco
  7. Teresa Soto
  8. Pilar Pérez
  9. Marisa Madrid
  10. Jose Cansado
(2023)
Myosin II regulatory light chain phosphorylation and formin availability modulate cytokinesis upon changes in carbohydrate metabolism
eLife 12:e83285.
https://doi.org/10.7554/eLife.83285

Share this article

https://doi.org/10.7554/eLife.83285

Further reading

    1. Cell Biology
    Shixuan Liu, Ceryl Tan ... Ran Kafri
    Research Advance

    Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. Previously, we showed that cell size control involves both cell size checkpoints, which delay cell cycle progression in small cells, and size-dependent regulation of mass accumulation rates (Ginzberg et al., 2018). While we previously identified the p38 MAPK pathway as a key regulator of the mammalian cell size checkpoint (S. Liu et al., 2018), the mechanism of size-dependent growth rate regulation has remained elusive. Here, we quantified global rates of protein synthesis and degradation in cells of varying sizes, both under unperturbed conditions and in response to perturbations that trigger size-dependent compensatory growth slowdown. We found that protein synthesis rates scale proportionally with cell size across cell cycle stages and experimental conditions. In contrast, oversized cells that undergo compensatory growth slowdown exhibit a superlinear increase in proteasome-mediated protein degradation, with accelerated protein turnover per unit mass, suggesting activation of the proteasomal degradation pathway. Both nascent and long-lived proteins contribute to the elevated protein degradation during compensatory growth slowdown, with long-lived proteins playing a crucial role at the G1/S transition. Notably, large G1/S cells exhibit particularly high efficiency in protein degradation, surpassing that of similarly sized or larger cells in S and G2, coinciding with the timing of the most stringent size control in animal cells. These results collectively suggest that oversized cells reduce their growth efficiency by activating global proteasome-mediated protein degradation to promote cell size homeostasis.

    1. Cell Biology
    2. Physics of Living Systems
    David Trombley McSwiggen, Helen Liu ... Hilary P Beck
    Research Article

    The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis. As a result, studies using super-resolution imaging are typically drawing conclusions from tens of cells and a few experimental conditions tested. We addressed these limitations by developing a high-throughput single-molecule tracking (htSMT) platform for pharmacologic dissection of protein dynamics in living cells at an unprecedented scale (capable of imaging >106 cells/day and screening >104 compounds). We applied htSMT to measure the cellular dynamics of fluorescently tagged estrogen receptor (ER) and screened a diverse library to identify small molecules that perturbed ER function in real time. With this one experimental modality, we determined the potency, pathway selectivity, target engagement, and mechanism of action for identified hits. Kinetic htSMT experiments were capable of distinguishing between on-target and on-pathway modulators of ER signaling. Integrated pathway analysis recapitulated the network of known ER interaction partners and suggested potentially novel, kinase-mediated regulatory mechanisms. The sensitivity of htSMT revealed a new correlation between ER dynamics and the ability of ER antagonists to suppress cancer cell growth. Therefore, measuring protein motion at scale is a powerful method to investigate dynamic interactions among proteins and may facilitate the identification and characterization of novel therapeutics.