The kleisin subunit controls the function of C. elegans meiotic cohesins by determining the mode of DNA binding and differential regulation by SCC-2 and WAPL-1

Abstract

The cohesin complex plays essential roles in chromosome segregation, 3D genome organisation, and DNA damage repair through its ability to modify DNA topology. In higher eukaryotes, meiotic chromosome function, and therefore fertility, requires cohesin complexes containing meiosis-specific kleisin subunits: REC8 and RAD21L in mammals and REC-8 and COH-3/4 in C. elegans. How these complexes perform the multiple functions of cohesin during meiosis and whether this involves different modes of DNA binding or dynamic association with chromosomes is poorly understood. Combining time-resolved methods of protein removal with live imaging and exploiting the temporospatial organisation of the C. elegans germline, we show that REC-8 complexes provide sister chromatid cohesion (SCC) and DNA repair, while COH-3/4 complexes control higher-order chromosome structure. High-abundance COH-3/4 complexes associate dynamically with individual chromatids in a manner dependent on cohesin loading (SCC-2) and removal (WAPL-1) factors. In contrast, low-abundance REC-8 complexes associate stably with chromosomes, tethering sister chromatids from S-phase until the meiotic divisions. Our results reveal that kleisin identity determines the function of meiotic cohesin by controlling the mode and regulation of cohesin-DNA association, and are consistent with a model in which SCC and DNA looping are performed by variant cohesin complexes that coexist on chromosomes.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files; source data for all graphs on the manuscript are provided in source data files associated with each figure containing graphs

Article and author information

Author details

  1. Maikel Castellano-Pozo

    MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Georgios Sioutas

    MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Consuelo Barroso

    MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Josh P Prince

    MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0877-7538
  5. Pablo Lopez-Jimenez

    Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6673-5996
  6. Joseph Davy

    MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Angel-Luis Jaso-Tamame

    MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Oliver Crawley

    MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Nan Shao

    MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Jesus Page

    Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8381-324X
  11. Enrique Martinez-Perez

    MRC London Institute of Medical Sciences, London, United Kingdom
    For correspondence
    enrique.martinez-perez@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5813-0383

Funding

Medical Research Council (MC-A652-5PY60)

  • Enrique Martinez-Perez

European Molecular Biology Organization (Postdoctoral Fellowship)

  • Maikel Castellano-Pozo

Fundacion Alfonso Martin Escudero (Postdoctoral Fellowship)

  • Maikel Castellano-Pozo

European Molecular Biology Organization (Scientific exchange grant)

  • Pablo Lopez-Jimenez

Universidad Autonoma de Madrid

  • Jesus Page

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Castellano-Pozo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,371
    views
  • 207
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maikel Castellano-Pozo
  2. Georgios Sioutas
  3. Consuelo Barroso
  4. Josh P Prince
  5. Pablo Lopez-Jimenez
  6. Joseph Davy
  7. Angel-Luis Jaso-Tamame
  8. Oliver Crawley
  9. Nan Shao
  10. Jesus Page
  11. Enrique Martinez-Perez
(2023)
The kleisin subunit controls the function of C. elegans meiotic cohesins by determining the mode of DNA binding and differential regulation by SCC-2 and WAPL-1
eLife 12:e84138.
https://doi.org/10.7554/eLife.84138

Share this article

https://doi.org/10.7554/eLife.84138

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.