High-content microscopy reveals a morphological signature of bortezomib resistance

  1. Megan E Kelley
  2. Adi Y Berman
  3. David R Stirling
  4. Beth A Cimini
  5. Yu Han
  6. Shantanu Singh
  7. Anne E Carpenter  Is a corresponding author
  8. Tarun M Kapoor  Is a corresponding author
  9. Gregory P Way  Is a corresponding author
  1. Rockefeller University, United States
  2. Broad Institute, United States
  3. University of Colorado Anschutz Medical Campus, United States

Abstract

Drug resistance is a challenge in anticancer therapy. In many cases, cancers can be resistant to the drug prior to exposure, i.e., possess intrinsic drug resistance. However, we lack target-independent methods to anticipate resistance in cancer cell lines or characterize intrinsic drug resistance without a priori knowledge of its cause. We hypothesized that cell morphology could provide an unbiased readout of drug resistance. To test this hypothesis, we used HCT116 cells, a mismatch repair-deficient cancer cell line, to isolate clones that were resistant or sensitive to bortezomib, a well-characterized proteasome inhibitor and anticancer drug to which many cancer cells possess intrinsic resistance. We then expanded these clones and measured high-dimensional single-cell morphology profiles using Cell Painting, a high-content microscopy assay. Our imaging- and computation-based profiling pipeline identified morphological features that differed between resistant and sensitive cells. We used these features to generate a morphological signature of bortezomib resistance. We then employed this morphological signature to analyze a set of HCT116 clones (five resistant and five sensitive) that had not been included in the signature training dataset, and correctly predicted sensitivity to bortezomib in seven cases, in the absence of drug treatment. This signature predicted bortezomib resistance better than resistance to other drugs targeting the ubiquitin-proteasome system. Our results establish a proof-of-concept framework for the unbiased analysis of drug resistance using high-content microscopy of cancer cells, in the absence of drug treatment.

Data availability

All data generated during this study are provided in the dataset cpg0028-kelley-resistance, available in the Cell Painting Gallery on the Registry of Open Data on AWS (https://registry.opendata.aws/cellpainting-gallery/). Processed data, source data files, and code to reproduce this analysis are available at https://github.com/broadinstitute/profiling-resistance-mechanisms (Way et al., 2023).

The following data sets were generated

Article and author information

Author details

  1. Megan E Kelley

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0251-5054
  2. Adi Y Berman

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David R Stirling

    Imaging Platform, Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6802-4103
  4. Beth A Cimini

    Imaging Platform, Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9640-9318
  5. Yu Han

    Imaging Platform, Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shantanu Singh

    Imaging Platform, Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3150-3025
  7. Anne E Carpenter

    Imaging Platform, Broad Institute, Cambridge, United States
    For correspondence
    anne@broadinstitute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1555-8261
  8. Tarun M Kapoor

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York City, United States
    For correspondence
    kapoor@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Gregory P Way

    Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, United States
    For correspondence
    Gregory.way@cuanschutz.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0503-9348

Funding

Starr Cancer Consortium (112-0039)

  • Anne E Carpenter
  • Tarun M Kapoor

National Institutes of Health (R35 GM122547)

  • Anne E Carpenter

National Institutes of Health (R35 GM130234)

  • Tarun M Kapoor

National Institutes of Health (T32 GM066699)

  • Megan E Kelley

National Institutes of Health (T32 GM115327)

  • Adi Y Berman

National Science Foundation (NSF GRFP 2019272977)

  • Adi Y Berman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Kelley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,358
    views
  • 190
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Megan E Kelley
  2. Adi Y Berman
  3. David R Stirling
  4. Beth A Cimini
  5. Yu Han
  6. Shantanu Singh
  7. Anne E Carpenter
  8. Tarun M Kapoor
  9. Gregory P Way
(2023)
High-content microscopy reveals a morphological signature of bortezomib resistance
eLife 12:e91362.
https://doi.org/10.7554/eLife.91362

Share this article

https://doi.org/10.7554/eLife.91362

Further reading

    1. Cancer Biology
    Han V Han, Richard Efem ... Richard Z Lin
    Research Article

    Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca−/− KPC (named αKO) cancer cells induces clonal enrichment of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression, and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally enriched CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally enriched T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.

    1. Cancer Biology
    2. Immunology and Inflammation
    Almudena Mendez-Perez, Andres M Acosta-Moreno ... Esteban Veiga
    Short Report

    In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.