Increase of cell surface vimentin is associated with vimentin network disruption and subsequent stress-induced premature senescence in human chondrocytes
Abstract
Accumulation of dysfunctional chondrocytes has detrimental consequences on the cartilage homeostasis and is thus thought to play a crucial role during the pathogenesis of osteoarthritis (OA). However, the underlying mechanisms of phenotypical alteration in chondrocytes are incompletely understood. Here, we provide evidence that disruption of the intracellular vimentin network and consequent phenotypical alteration in human chondrocytes results in an externalization of the intermediate filament. The presence of so-called cell surface vimentin (CSV) on chondrocytes was associated with the severity of tissue degeneration in clinical OA samples and was enhanced after mechanical injury of cartilage tissue. By means of a doxorubicine-based in vitro model of stress-induced premature senescence (SIPS), we could confirm the connection between cellular senescence and amount of CSV. Although siRNA-mediated silencing of CDKN2A clearly reduced the senescent phenotype as well as CSV levels of human chondrocytes, cellular senescence could not be completely reversed. Interestingly, knockdown of vimentin resulted in a SIPS-like phenotype and consequently increased CSV. Therefore, we concluded that the integrity of the intracellular vimentin network is crucial to maintain cellular function in chondrocytes. This assumption could be confirmed by chemically-induced collapse of the vimentin network, which resulted in cellular stress and enhanced CSV expression. Regarding its biological function, CSV was found to be associated with enhanced chondrocyte adhesion and plasticity. While osteogenic capacities seemed to be enhanced in chondrocytes expressing high levels of CSV, the chondrogenic potential was clearly compromised. Overall, our study reinforces the importance of the vimentin network in maintenance of the chondrogenic phenotype and introduces CSV as a novel membrane-bound marker of dysfunctional chondrocytes.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting file.
Article and author information
Author details
Funding
European Social Fund
- Jana Riegger
Ministry of Science, Research, and Arts Baden-Württemberg
- Jana Riegger
University of Ulm
- Jana Riegger
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Riegger & Brenner
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 917
- views
-
- 176
- downloads
-
- 6
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Evolutionary Biology
Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.
-
- Cell Biology
- Developmental Biology
Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.