The role of RNA in the maintenance of chromatin domains as revealed by antibody mediated proximity labelling coupled to mass spectrometry

  1. Rupam Choudhury
  2. Anuroop Venkateswaran Venkatasubramani
  3. Jie Hua
  4. Marco Borsò
  5. Celeste Franconi
  6. Sarah Kinkley
  7. Ignasi Forné
  8. Axel Imhof  Is a corresponding author
  1. Ludwig-Maximilians-Universität München, Germany
  2. Max Planck Institute for Molecular Genetics, Germany

Abstract

Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

Data availability

The datasets produced in this study are available in the ProteomeXchange Consortium via the PRIDE 64 partner repository with the identifiers: PXD044295 (Proteomics) and PXD044296 (Histone PTMs).

The following data sets were generated

Article and author information

Author details

  1. Rupam Choudhury

    Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Anuroop Venkateswaran Venkatasubramani

    Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2119-8741
  3. Jie Hua

    Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4910-0945
  4. Marco Borsò

    Protein Analysis Unit, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7467-7960
  5. Celeste Franconi

    Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Sarah Kinkley

    Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4997-4749
  7. Ignasi Forné

    Protein Analysis Unit, Ludwig-Maximilians-Universität München, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0309-907X
  8. Axel Imhof

    Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
    For correspondence
    Imhof@lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2993-8249

Funding

Deutsche Forschungsgemeinschaft (419067076)

  • Rupam Choudhury

Deutsche Forschungsgemeinschaft (213249687)

  • Marco Borsò

Deutsche Forschungsgemeinschaft (325871075)

  • Rupam Choudhury

Deutsche Forschungsgemeinschaft (QBM)

  • Anuroop Venkateswaran Venkatasubramani

Volkswagen Foundation (97131)

  • Celeste Franconi
  • Sarah Kinkley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Choudhury et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,095
    views
  • 278
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rupam Choudhury
  2. Anuroop Venkateswaran Venkatasubramani
  3. Jie Hua
  4. Marco Borsò
  5. Celeste Franconi
  6. Sarah Kinkley
  7. Ignasi Forné
  8. Axel Imhof
(2024)
The role of RNA in the maintenance of chromatin domains as revealed by antibody mediated proximity labelling coupled to mass spectrometry
eLife 13:e95718.
https://doi.org/10.7554/eLife.95718

Share this article

https://doi.org/10.7554/eLife.95718

Further reading

    1. Chromosomes and Gene Expression
    Carlos Moreno-Yruela, Beat Fierz
    Insight

    Specialized magnetic beads that bind target proteins to a cryogenic electron microscopy grid make it possible to study the structure of protein complexes from dilute samples.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.