Maternally inherited piRNAs direct transient heterochromatin formation at active transposons during early Drosophila embryogenesis
Abstract
The PIWI-interacting RNA (piRNA) pathway controls transposon expression in animal germ cells, thereby ensuring genome stability over generations. In Drosophila, piRNAs are intergenerationally inherited through the maternal lineage, and this has demonstrated importance in the specification of piRNA source loci and in silencing of I- and P-elements in the germ cells of daughters. Maternally inherited Piwi protein enters somatic nuclei in early embryos prior to zygotic genome activation and persists therein for roughly half of the time required to complete embryonic development. To investigate the role of the piRNA pathway in the embryonic soma, we created a conditionally unstable Piwi protein. This enabled maternally deposited Piwi to be cleared from newly laid embryos within 30 minutes and well ahead of the activation of zygotic transcription. Examination of RNA and protein profiles over time, and correlation with patterns of H3K9me3 deposition, suggests a role for maternally deposited Piwi in attenuating zygotic transposon expression in somatic cells of the developing embryo. In particular, robust deposition of piRNAs targeting roo, an element whose expression is mainly restricted to embryonic development, results in the deposition of transient heterochromatic marks at active roo insertions. We hypothesize that roo, an extremely successful mobile element, may have adopted a lifestyle of expression in the embryonic soma to evade silencing in germ cells.
Data availability
Raw data from high-throughput sequencing experiments are available at GEO under accession number GSE160778. Raw data from proteomics experiments are available on PRIDE with accession number PXD0022409. Source data files have been provided for Figures 1 and 2.
-
Maternally inherited piRNAs silence transposons during Drosophila embryogenesisNCBI Gene Expression Omnibus, GSE160778.
-
piRNA-guided co-transcriptional silencing coopts nuclear export factorsNCBI Gene Expression Omnibus, GSE121661.
Article and author information
Author details
Funding
Royal Society (Wolfson Research Professor (RP130039))
- Gregory J Hannon
Cancer Research UK (Core funding (A21143))
- Gregory J Hannon
Wellcome Trust (Investigator award (110161/ Z/15/Z))
- Gregory J Hannon
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Fabry et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,215
- views
-
- 561
- downloads
-
- 34
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Chromosomes and Gene Expression
Specialized magnetic beads that bind target proteins to a cryogenic electron microscopy grid make it possible to study the structure of protein complexes from dilute samples.
-
- Chromosomes and Gene Expression
The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of SIR2, a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.