Pathway dynamics can delineate the sources of transcriptional noise in gene expression

  1. Lucy Ham  Is a corresponding author
  2. Marcel Jackson
  3. Michael Stumpf  Is a corresponding author
  1. University of Melbourne, Australia
  2. La Trobe University, Australia

Abstract

Single-cell expression profiling opens up new vistas on cellular processes. Extensive cell-to-cell variability at the transcriptomic and proteomic level has been one of the stand-out observations. Because most experimental analyses are destructive we only have access to snapshot data of cellular states. This loss of temporal information presents significant challenges for inferring dynamics, as well as causes of cell-to-cell variability. In particular, we typically cannot separate dynamic variability from within cells ('intrinsic noise') from variability across the population ('extrinsic noise'). Here we make this non-identifiability mathematically precise, allowing us to identify new experimental set-ups that can assist in resolving this non-identifiability. We show that multiple generic reporters from the same biochemical pathways (e.g. mRNA and protein) can infer magnitudes of intrinsic and extrinsic transcriptional noise, identifying sources of heterogeneity. Stochastic simulations support our theory, and demonstrate that 'pathway-reporters' compare favourably to the well-known, but often difficult to implement, dual-reporter method.

Data availability

All methods and simulation results are shared via a github site.There is no original data associated with this manuscript.

Article and author information

Author details

  1. Lucy Ham

    University of Melbourne, Melbourne, Australia
    For correspondence
    lucy.ham@unimelb.edu.au
    Competing interests
    The authors declare that no competing interests exist.
  2. Marcel Jackson

    La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Stumpf

    University of Melbourne, Melbourne, Australia
    For correspondence
    mstumpf@unimelb.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3577-1222

Funding

University of Melbourne (DRM)

  • Lucy Ham
  • Michael Stumpf

Volkswagen Foundation (93 062)

  • Michael Stumpf

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Ham et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,773
    views
  • 386
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lucy Ham
  2. Marcel Jackson
  3. Michael Stumpf
(2021)
Pathway dynamics can delineate the sources of transcriptional noise in gene expression
eLife 10:e69324.
https://doi.org/10.7554/eLife.69324

Share this article

https://doi.org/10.7554/eLife.69324

Further reading

    1. Chromosomes and Gene Expression
    Carlos Moreno-Yruela, Beat Fierz
    Insight

    Specialized magnetic beads that bind target proteins to a cryogenic electron microscopy grid make it possible to study the structure of protein complexes from dilute samples.

    1. Chromosomes and Gene Expression
    Carmina Lichauco, Eric J Foss ... Antonio Bedalov
    Research Article

    The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of SIR2, a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.