microRNA-mediated regulation of microRNA machinery controls cell fate decisions
Abstract
microRNAs associate with Argonaute proteins, forming the microRNA-induced silencing complex (miRISC), to repress target gene expression post-transcriptionally. Although microRNAs are critical regulators in mammalian cell differentiation, our understanding of how microRNA machinery, such as the miRISC, are regulated during development is still limited. We previously showed that repressing the production of one Argonaute protein, Ago2, by Trim71 is important for mouse embryonic stem cells (mESC) self-renewal (Liu et al., 2021). Here we show that among the four Argonaute proteins in mammals, Ago2 is the major developmentally regulated Argonaute protein in mESCs. Moreover, in pluripotency, besides the Trim71-mediated regulation of Ago2 (Liu et al., 2021), Mir182/Mir183 also repress Ago2. Specific inhibition of this microRNA-mediated repression results in stemness defects and accelerated differentiation through the let-7 microRNA pathway. These results reveal a microRNA-mediated regulatory circuit on microRNA machinery that is critical to maintaining pluripotency.
Data availability
All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-5.
-
Studies on Trim71 in mouse embryonic stem cellsNCBI Gene Expression Omnibus | GSE138284.
Article and author information
Author details
Funding
Mayo Foundation for Medical Education and Research
- Qiuying Liu
- Mariah K Novak
- Rachel M Pepin
- Taylor Eich
- Wenqian Hu
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Liu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,683
- views
-
- 218
- downloads
-
- 19
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Functional subpopulations of β-cells emerge to control pulsative insulin secretion in the pancreatic islets of mice through calcium oscillations.
-
- Cell Biology
Oscillations in insulin secretion, driven by islet Ca2+ waves, are crucial for glycemic control. Prior studies, performed with single-plane imaging, suggest that subpopulations of electrically coupled β-cells have privileged roles in leading and coordinating the propagation of Ca2+ waves. Here, we used three-dimensional (3D) light-sheet imaging to analyze the location and Ca2+ activity of single β-cells within the entire islet at >2 Hz. In contrast with single-plane studies, 3D network analysis indicates that the most highly synchronized β-cells are located at the islet center, and remain regionally but not cellularly stable between oscillations. This subpopulation, which includes ‘hub cells’, is insensitive to changes in fuel metabolism induced by glucokinase and pyruvate kinase activation. β-Cells that initiate the Ca2+ wave (leaders) are located at the islet periphery, and strikingly, change their identity over time via rotations in the wave axis. Glucokinase activation, which increased oscillation period, reinforced leader cells and stabilized the wave axis. Pyruvate kinase activation, despite increasing oscillation frequency, had no effect on leader cells, indicating the wave origin is patterned by fuel input. These findings emphasize the stochastic nature of the β-cell subpopulations that control Ca2+ oscillations and identify a role for glucokinase in spatially patterning ‘leader’ β-cells.