High-resolution mapping demonstrates inhibition of DNA excision repair by transcription factors

  1. Mingrui Duan
  2. Smitha Sivapragasam
  3. Jacob S Antony
  4. Jenna Ulibarri
  5. John M Hinz
  6. Gregory MK Poon
  7. John J Wyrick  Is a corresponding author
  8. Peng Mao  Is a corresponding author
  1. University of New Mexico, United States
  2. Washington State University, United States
  3. Georgia State University, United States

Abstract

DNA base damage arises frequently in living cells and needs to be removed by base excision repair (BER) to prevent mutagenesis and genome instability. Both the formation and repair of base damage occur in chromatin and are conceivably affected by DNA-binding proteins such as transcription factors (TFs). However, to what extent TF binding affects base damage distribution and BER in cells is unclear. Here, we used a genome-wide damage mapping method, N-methylpurine-sequencing (NMP-seq), and characterized alkylation damage distribution and BER at TF binding sites in yeast cells treated with the alkylating agent methyl methanesulfonate (MMS). Our data shows that alkylation damage formation was mainly suppressed at the binding sites of yeast TFs Abf1 and Reb1, but individual hotspots with elevated damage levels were also found. Additionally, Abf1 and Reb1 binding strongly inhibits BER in vivo and in vitro, causing slow repair both within the core motif and its adjacent DNA. Repair of UV damage by nucleotide excision repair (NER) was also inhibited by TF binding. Interestingly, TF binding inhibits a larger DNA region for NER relative to BER. The observed effects are caused by the TF-DNA interaction, because damage formation and BER can be restored by depletion of Abf1 or Reb1 protein from the nucleus. Thus, our data reveal that TF binding significantly modulates alkylation base damage formation and inhibits repair by the BER pathway. The interplay between base damage formation and BER may play an important role in affecting mutation frequency in gene regulatory regions.

Data availability

New DNA sequencing data has been deposited to GEO under accession code GSE183622. All data generated or analyzed are included in the manuscript and supplemental file. Source data files containing the numerical data for Figure 1 and Figure 2 are uploaded. Source codes used for sequencing reads mapping to identify alkylation lesions and repair analysis at yeast Abf1 and Reb1 binding sites are also uploaded.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Mingrui Duan

    Department of Internal Medicine, University of New Mexico, Albuquerque, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2352-1840
  2. Smitha Sivapragasam

    School of Molecular Biosciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5599-9988
  3. Jacob S Antony

    School of Molecular Biosciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1481-9768
  4. Jenna Ulibarri

    Department of Internal Medicine, University of New Mexico, Albuquerque, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John M Hinz

    School of Molecular Biosciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Gregory MK Poon

    Department of Chemistry, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. John J Wyrick

    School of Molecular Biosciences, Washington State University, Pullman, United States
    For correspondence
    jwyrick@wsu.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Peng Mao

    Department of Internal Medicine, University of New Mexico, Albuquerque, United States
    For correspondence
    pmao@salud.unm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2068-1344

Funding

National Institute of Environmental Health Sciences (R21ES029302)

  • John J Wyrick
  • Peng Mao

National Institute of Environmental Health Sciences (R01ES032814)

  • John J Wyrick

National Institute of Environmental Health Sciences (R01ES028698)

  • John J Wyrick

National Science Foundation (MCB 2028902)

  • Gregory MK Poon

National Institute of General Medical Sciences (P20GM130422)

  • Peng Mao

National Cancer Institute (P30CA118100)

  • Mingrui Duan
  • Peng Mao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Duan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,368
    views
  • 191
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mingrui Duan
  2. Smitha Sivapragasam
  3. Jacob S Antony
  4. Jenna Ulibarri
  5. John M Hinz
  6. Gregory MK Poon
  7. John J Wyrick
  8. Peng Mao
(2022)
High-resolution mapping demonstrates inhibition of DNA excision repair by transcription factors
eLife 11:e73943.
https://doi.org/10.7554/eLife.73943

Share this article

https://doi.org/10.7554/eLife.73943

Further reading

    1. Cancer Biology
    Han V Han, Richard Efem ... Richard Z Lin
    Research Article

    Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca−/− KPC (named αKO) cancer cells induces clonal enrichment of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression, and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally enriched CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally enriched T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.

    1. Cancer Biology
    2. Immunology and Inflammation
    Almudena Mendez-Perez, Andres M Acosta-Moreno ... Esteban Veiga
    Short Report

    In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.