High-resolution mapping demonstrates inhibition of DNA excision repair by transcription factors

  1. Mingrui Duan
  2. Smitha Sivapragasam
  3. Jacob S Antony
  4. Jenna Ulibarri
  5. John M Hinz
  6. Gregory MK Poon
  7. John J Wyrick  Is a corresponding author
  8. Peng Mao  Is a corresponding author
  1. University of New Mexico, United States
  2. Washington State University, United States
  3. Georgia State University, United States

Abstract

DNA base damage arises frequently in living cells and needs to be removed by base excision repair (BER) to prevent mutagenesis and genome instability. Both the formation and repair of base damage occur in chromatin and are conceivably affected by DNA-binding proteins such as transcription factors (TFs). However, to what extent TF binding affects base damage distribution and BER in cells is unclear. Here, we used a genome-wide damage mapping method, N-methylpurine-sequencing (NMP-seq), and characterized alkylation damage distribution and BER at TF binding sites in yeast cells treated with the alkylating agent methyl methanesulfonate (MMS). Our data shows that alkylation damage formation was mainly suppressed at the binding sites of yeast TFs Abf1 and Reb1, but individual hotspots with elevated damage levels were also found. Additionally, Abf1 and Reb1 binding strongly inhibits BER in vivo and in vitro, causing slow repair both within the core motif and its adjacent DNA. Repair of UV damage by nucleotide excision repair (NER) was also inhibited by TF binding. Interestingly, TF binding inhibits a larger DNA region for NER relative to BER. The observed effects are caused by the TF-DNA interaction, because damage formation and BER can be restored by depletion of Abf1 or Reb1 protein from the nucleus. Thus, our data reveal that TF binding significantly modulates alkylation base damage formation and inhibits repair by the BER pathway. The interplay between base damage formation and BER may play an important role in affecting mutation frequency in gene regulatory regions.

Data availability

New DNA sequencing data has been deposited to GEO under accession code GSE183622. All data generated or analyzed are included in the manuscript and supplemental file. Source data files containing the numerical data for Figure 1 and Figure 2 are uploaded. Source codes used for sequencing reads mapping to identify alkylation lesions and repair analysis at yeast Abf1 and Reb1 binding sites are also uploaded.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Mingrui Duan

    Department of Internal Medicine, University of New Mexico, Albuquerque, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2352-1840
  2. Smitha Sivapragasam

    School of Molecular Biosciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5599-9988
  3. Jacob S Antony

    School of Molecular Biosciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1481-9768
  4. Jenna Ulibarri

    Department of Internal Medicine, University of New Mexico, Albuquerque, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John M Hinz

    School of Molecular Biosciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Gregory MK Poon

    Department of Chemistry, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. John J Wyrick

    School of Molecular Biosciences, Washington State University, Pullman, United States
    For correspondence
    jwyrick@wsu.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Peng Mao

    Department of Internal Medicine, University of New Mexico, Albuquerque, United States
    For correspondence
    pmao@salud.unm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2068-1344

Funding

National Institute of Environmental Health Sciences (R21ES029302)

  • John J Wyrick
  • Peng Mao

National Institute of Environmental Health Sciences (R01ES032814)

  • John J Wyrick

National Institute of Environmental Health Sciences (R01ES028698)

  • John J Wyrick

National Science Foundation (MCB 2028902)

  • Gregory MK Poon

National Institute of General Medical Sciences (P20GM130422)

  • Peng Mao

National Cancer Institute (P30CA118100)

  • Mingrui Duan
  • Peng Mao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Duan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,317
    views
  • 189
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mingrui Duan
  2. Smitha Sivapragasam
  3. Jacob S Antony
  4. Jenna Ulibarri
  5. John M Hinz
  6. Gregory MK Poon
  7. John J Wyrick
  8. Peng Mao
(2022)
High-resolution mapping demonstrates inhibition of DNA excision repair by transcription factors
eLife 11:e73943.
https://doi.org/10.7554/eLife.73943

Share this article

https://doi.org/10.7554/eLife.73943

Further reading

    1. Cancer Biology
    Jae Hun Shin, Jooyoung Park ... Alfred LM Bothwell
    Research Article

    Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.

    1. Cancer Biology
    2. Computational and Systems Biology
    Nayoung Kim, Sehhoon Park ... Myung-Ju Ahn
    Research Article

    This study investigates the variability among patients with non-small cell lung cancer (NSCLC) in their responses to immune checkpoint inhibitors (ICIs). Recognizing that patients with advanced-stage NSCLC rarely qualify for surgical interventions, it becomes crucial to identify biomarkers that influence responses to ICI therapy. We conducted an analysis of single-cell transcriptomes from 33 lung cancer biopsy samples, with a particular focus on 14 core samples taken before the initiation of palliative ICI treatment. Our objective was to link tumor and immune cell profiles with patient responses to ICI. We discovered that ICI non-responders exhibited a higher presence of CD4+ regulatory T cells, resident memory T cells, and TH17 cells. This contrasts with the diverse activated CD8+ T cells found in responders. Furthermore, tumor cells in non-responders frequently showed heightened transcriptional activity in the NF-kB and STAT3 pathways, suggesting a potential inherent resistance to ICI therapy. Through the integration of immune cell profiles and tumor molecular signatures, we achieved an discriminative power (area under the curve [AUC]) exceeding 95% in identifying patient responses to ICI treatment. These results underscore the crucial importance of the interplay between tumor and immune microenvironment, including within metastatic sites, in affecting the effectiveness of ICIs in NSCLC.