Chlamydomonas ARMC2/PF27 is an obligate cargo adapter for IFT of radial spokes

  1. Karl F Lechtreck  Is a corresponding author
  2. Yi Liu
  3. Jin Dai
  4. Rama A Alkhofash
  5. jack Butler
  6. Lea Alford
  7. Pinfen Yang  Is a corresponding author
  1. University of Georgia, United States
  2. Marquette University, United States
  3. Oglethorpe University, United States

Abstract

Intraflagellar transport (IFT) carries proteins into flagella but how IFT trains interact with the large number of diverse proteins required to assemble flagella remains largely unknown. Here, we show that IFT of radial spokes in Chlamydomonas requires ARMC2/PF27, a conserved armadillo repeat protein associated with male infertility and reduced lung function. Chlamydomonas ARMC2 was highly enriched in growing flagella and tagged ARMC2 and the spoke protein RSP3 comigrated on anterograde trains. In contrast, a cargo and an adapter of inner and outer dynein arms moved independently of ARMC2, indicating that unrelated cargoes distribute stochastically onto the IFT trains. After concomitant unloading at the flagellar tip, RSP3 attached to the axoneme whereas ARMC2 diffused back to the cell body. In armc2/pf27 mutants, IFT of radial spokes was abolished and the presence of radial spokes was limited to the proximal region of flagella. We conclude that ARMC2 is a cargo adapter required for IFT of radial spokes to ensure their assembly along flagella. ARMC2 belongs to a growing class of cargo-specific adapters that enable flagellar transport of preassembled axonemal substructures by IFT.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for the western blots in Figures 1, 2, Figure 1 -Supplement 1 and Figure 2 - Supplement 1.

Article and author information

Author details

  1. Karl F Lechtreck

    Department of Cellular Biology, University of Georgia, Athens, United States
    For correspondence
    lechtrek@uga.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6219-6470
  2. Yi Liu

    Department of Biological Sciences, Marquette University, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jin Dai

    Department of Cellular Biology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Rama A Alkhofash

    Department of Cellular Biology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. jack Butler

    Department of Cellular Biology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lea Alford

    Division of Natural Sciences,, Oglethorpe University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Pinfen Yang

    Department of Biological Sciences, Marquette University, Milwaukee, United States
    For correspondence
    pinfen.yang@marquette.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3773-0053

Funding

National Institute of Health (R01GM110413)

  • Karl F Lechtreck

NIH (R015GM12813)

  • Lea Alford
  • Pinfen Yang

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Copyright

© 2022, Lechtreck et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,057
    views
  • 207
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karl F Lechtreck
  2. Yi Liu
  3. Jin Dai
  4. Rama A Alkhofash
  5. jack Butler
  6. Lea Alford
  7. Pinfen Yang
(2022)
Chlamydomonas ARMC2/PF27 is an obligate cargo adapter for IFT of radial spokes
eLife 11:e74993.
https://doi.org/10.7554/eLife.74993

Share this article

https://doi.org/10.7554/eLife.74993

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.