Listeria monocytogenes requires cellular respiration for NAD+ regeneration and pathogenesis

  1. Rafael Rivera-Lugo
  2. David Deng
  3. Andrea Anaya-Sanchez
  4. Sara Tejedor-Sanz
  5. Eugene Tang
  6. Valeria M Reyes Ruiz
  7. Hans B Smith
  8. Denis V Titov
  9. John Demian Sauer
  10. Eric P Skaar
  11. Caroline M Ajo-Franklin
  12. Daniel A Portnoy
  13. Samuel H Light  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Rice University, United States
  3. Vanderbilt University Medical Center, United States
  4. University of Wisconsin-Madison, United States
  5. University of Chicago, United States

Abstract

Cellular respiration is essential for multiple bacterial pathogens and a validated antibiotic target. In addition to driving oxidative phosphorylation, bacterial respiration has a variety of ancillary functions that obscure its contribution to pathogenesis. We find here that the intracellular pathogen Listeria monocytogenes encodes two respiratory pathways which are partially functionally redundant and indispensable for pathogenesis. Loss of respiration decreased NAD+ regeneration, but this could be specifically reversed by heterologous expression of a water-forming NADH oxidase (NOX). NOX expression fully rescued intracellular growth defects and increased L. monocytogenes loads >1,000-fold in a mouse infection model. Consistent with NAD+ regeneration maintaining L. monocytogenes viability and enabling immune evasion, a respiration-deficient strain exhibited elevated bacteriolysis within the host cytosol and NOX expression rescued this phenotype. These studies show that NAD+ regeneration represents a major role of L. monocytogenes respiration and highlight the nuanced relationship between bacterial metabolism, physiology, and pathogenesis.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Rafael Rivera-Lugo

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2346-2297
  2. David Deng

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Andrea Anaya-Sanchez

    Graduate Group in Microbiology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Sara Tejedor-Sanz

    Department of Biosciences, Rice University, Houston, United States
    Competing interests
    No competing interests declared.
  5. Eugene Tang

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Valeria M Reyes Ruiz

    Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  7. Hans B Smith

    Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  8. Denis V Titov

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Denis V Titov, is a co-inventor on a filed patent describing the use of NOX. (US Patent App. 15/749,218).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5677-0651
  9. John Demian Sauer

    Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9367-794X
  10. Eric P Skaar

    Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  11. Caroline M Ajo-Franklin

    Department of Biosciences, Rice University, Houston, United States
    Competing interests
    No competing interests declared.
  12. Daniel A Portnoy

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  13. Samuel H Light

    Department of Microbiology, University of Chicago, Chicago, United States
    For correspondence
    samlight@uchicago.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8074-1348

Funding

National Institutes of Health (T32GM007215)

  • Hans B Smith

Searle Scholars Program

  • Samuel H Light

National Institutes of Health (R01AI137070)

  • John Demian Sauer

National Institutes of Health (R01AI073843)

  • Eric P Skaar

National Institutes of Health (R01AI073843)

  • Eric P Skaar

National Institutes of Health (1P01AI063302)

  • Daniel A Portnoy

National Institutes of Health (1R01AI27655)

  • Daniel A Portnoy

National Institutes of Health (K22AI144031)

  • Samuel H Light

National Academies of Sciences, Engineering, and Medicine (Ford Foundation Fellowship)

  • Rafael Rivera-Lugo

University of California (Dissertation-Year Fellowship)

  • Rafael Rivera-Lugo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal work was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Protocols were reviewed and approved by the Animal Care and Use Committee at the University of California, Berkeley (AUP 2016-05-8811).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,957
    views
  • 441
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rafael Rivera-Lugo
  2. David Deng
  3. Andrea Anaya-Sanchez
  4. Sara Tejedor-Sanz
  5. Eugene Tang
  6. Valeria M Reyes Ruiz
  7. Hans B Smith
  8. Denis V Titov
  9. John Demian Sauer
  10. Eric P Skaar
  11. Caroline M Ajo-Franklin
  12. Daniel A Portnoy
  13. Samuel H Light
(2022)
Listeria monocytogenes requires cellular respiration for NAD+ regeneration and pathogenesis
eLife 11:e75424.
https://doi.org/10.7554/eLife.75424

Share this article

https://doi.org/10.7554/eLife.75424

Further reading

    1. Biochemistry and Chemical Biology
    Gabriella O Estevam, Edmond Linossi ... James S Fraser
    Research Article

    Mutations in the kinase and juxtamembrane domains of the MET Receptor Tyrosine Kinase are responsible for oncogenesis in various cancers and can drive resistance to MET-directed treatments. Determining the most effective inhibitor for each mutational profile is a major challenge for MET-driven cancer treatment in precision medicine. Here, we used a deep mutational scan (DMS) of ~5764 MET kinase domain variants to profile the growth of each mutation against a panel of 11 inhibitors that are reported to target the MET kinase domain. We validate previously identified resistance mutations, pinpoint common resistance sites across type I, type II, and type I ½ inhibitors, unveil unique resistance and sensitizing mutations for each inhibitor, and verify non-cross-resistant sensitivities for type I and type II inhibitor pairs. We augment a protein language model with biophysical and chemical features to improve the predictive performance for inhibitor-treated datasets. Together, our study demonstrates a pooled experimental pipeline for identifying resistance mutations, provides a reference dictionary for mutations that are sensitized to specific therapies, and offers insights for future drug development.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Kira Breunig, Xuifen Lei ... Luiz O Penalva
    Research Article

    RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1’s interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer’s brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.