Listeria monocytogenes requires cellular respiration for NAD+ regeneration and pathogenesis

  1. Rafael Rivera-Lugo
  2. David Deng
  3. Andrea Anaya-Sanchez
  4. Sara Tejedor-Sanz
  5. Eugene Tang
  6. Valeria M Reyes Ruiz
  7. Hans B Smith
  8. Denis V Titov
  9. John Demian Sauer
  10. Eric P Skaar
  11. Caroline M Ajo-Franklin
  12. Daniel A Portnoy
  13. Samuel H Light  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Rice University, United States
  3. Vanderbilt University Medical Center, United States
  4. University of Wisconsin-Madison, United States
  5. University of Chicago, United States

Abstract

Cellular respiration is essential for multiple bacterial pathogens and a validated antibiotic target. In addition to driving oxidative phosphorylation, bacterial respiration has a variety of ancillary functions that obscure its contribution to pathogenesis. We find here that the intracellular pathogen Listeria monocytogenes encodes two respiratory pathways which are partially functionally redundant and indispensable for pathogenesis. Loss of respiration decreased NAD+ regeneration, but this could be specifically reversed by heterologous expression of a water-forming NADH oxidase (NOX). NOX expression fully rescued intracellular growth defects and increased L. monocytogenes loads >1,000-fold in a mouse infection model. Consistent with NAD+ regeneration maintaining L. monocytogenes viability and enabling immune evasion, a respiration-deficient strain exhibited elevated bacteriolysis within the host cytosol and NOX expression rescued this phenotype. These studies show that NAD+ regeneration represents a major role of L. monocytogenes respiration and highlight the nuanced relationship between bacterial metabolism, physiology, and pathogenesis.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Rafael Rivera-Lugo

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2346-2297
  2. David Deng

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Andrea Anaya-Sanchez

    Graduate Group in Microbiology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Sara Tejedor-Sanz

    Department of Biosciences, Rice University, Houston, United States
    Competing interests
    No competing interests declared.
  5. Eugene Tang

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Valeria M Reyes Ruiz

    Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  7. Hans B Smith

    Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  8. Denis V Titov

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Denis V Titov, is a co-inventor on a filed patent describing the use of NOX. (US Patent App. 15/749,218).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5677-0651
  9. John Demian Sauer

    Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9367-794X
  10. Eric P Skaar

    Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  11. Caroline M Ajo-Franklin

    Department of Biosciences, Rice University, Houston, United States
    Competing interests
    No competing interests declared.
  12. Daniel A Portnoy

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  13. Samuel H Light

    Department of Microbiology, University of Chicago, Chicago, United States
    For correspondence
    samlight@uchicago.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8074-1348

Funding

National Institutes of Health (T32GM007215)

  • Hans B Smith

Searle Scholars Program

  • Samuel H Light

National Institutes of Health (R01AI137070)

  • John Demian Sauer

National Institutes of Health (R01AI073843)

  • Eric P Skaar

National Institutes of Health (R01AI073843)

  • Eric P Skaar

National Institutes of Health (1P01AI063302)

  • Daniel A Portnoy

National Institutes of Health (1R01AI27655)

  • Daniel A Portnoy

National Institutes of Health (K22AI144031)

  • Samuel H Light

National Academies of Sciences, Engineering, and Medicine (Ford Foundation Fellowship)

  • Rafael Rivera-Lugo

University of California (Dissertation-Year Fellowship)

  • Rafael Rivera-Lugo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal work was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Protocols were reviewed and approved by the Animal Care and Use Committee at the University of California, Berkeley (AUP 2016-05-8811).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,833
    views
  • 423
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rafael Rivera-Lugo
  2. David Deng
  3. Andrea Anaya-Sanchez
  4. Sara Tejedor-Sanz
  5. Eugene Tang
  6. Valeria M Reyes Ruiz
  7. Hans B Smith
  8. Denis V Titov
  9. John Demian Sauer
  10. Eric P Skaar
  11. Caroline M Ajo-Franklin
  12. Daniel A Portnoy
  13. Samuel H Light
(2022)
Listeria monocytogenes requires cellular respiration for NAD+ regeneration and pathogenesis
eLife 11:e75424.
https://doi.org/10.7554/eLife.75424

Share this article

https://doi.org/10.7554/eLife.75424

Further reading

    1. Biochemistry and Chemical Biology
    Shraddha KC, Kenny H Nguyen ... Thomas C Boothby
    Research Article

    The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins, combined with the exposure of their residues, accounts for this sensitivity. One context in which IDPs play important roles that are concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat-soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet the mechanisms underlying this synergy differ between IDP families.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.