Short senolytic or senostatic interventions rescue progression of radiation-induced frailty and premature ageing in mice

Abstract

Cancer survivors suffer from progressive frailty, multimorbidity and premature morbidity. We hypothesize that therapy-induced senescence and senescence progression via bystander effects is a significant cause of this premature ageing phenotype. Accordingly, the study addresses the question whether a short anti-senescence intervention is able to block progression of radiation-induced frailty and disability in a pre-clinical setting. Male mice were sub-lethally irradiated at 5 months of age and treated (or not) with either a senolytic drug (Navitoclax or dasatinib + quercetin) for 10 days or with the senostatic metformin for 10 weeks. Follow up was for one year. Treatments commencing within a month after irradiation effectively reduced frailty progression (p<0.05) and improved muscle (p<0.01) and liver (p<0.05) function as well as short-term memory (p<0.05) until advanced age with no need for repeated interventions. Senolytic interventions that started late, after radiation-induced premature frailty was manifest, still had beneficial effects on frailty (p<0.05) and short-term memory (p<0.05). Metformin was similarly effective as senolytics. At therapeutically achievable concentrations metformin acted as a senostatic neither via inhibition of mitochondrial complex I, nor via improvement of mitophagy or mitochondrial function, but by reducing non-mitochondrial ROS production via NOX4 inhibition in senescent cells. Our study suggests that the progression of adverse long-term health and quality-of-life effects of radiation exposure, as experienced by cancer survivors, might be rescued by short-term adjuvant anti-senescence interventions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files; Source Data files have been provided for all Figures.

Article and author information

Author details

  1. Edward Fielder

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2834-8706
  2. Tengfei Wan

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  3. Ghazaleh Alimohammadiha

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  4. Abbas Ishaq

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    Abbas Ishaq, Abbas Ishaq is affiliated with Alcyomics Ltd. The author has no financial interests to declare..
  5. Evon Low

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  6. B Melanie Weigand

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  7. George Kelly

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  8. Craig Parker

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  9. Brigid Griffin

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  10. Diana Jurk

    Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, United States
    Competing interests
    No competing interests declared.
  11. Viktor I Korolchuk

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  12. Thomas von Zglinicki

    Newcastle University, Newcastle, United Kingdom
    For correspondence
    t.vonzglinicki@ncl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5939-0248
  13. Satomi Miwa

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.

Funding

Cancer Research UK (C12161/A24009)

  • Thomas von Zglinicki

Biotechnology and Biological Sciences Research Council (BB/S006710/1)

  • Thomas von Zglinicki

UK SPINE Bridge (B06)

  • Thomas von Zglinicki
  • Satomi Miwa

Biotechnology and Biological Sciences Research Council (BH174490)

  • Viktor I Korolchuk

Biotechnology and Biological Sciences Research Council

  • Diana Jurk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experimentation was performed in compliance with the guiding principles for the care and use of laboratory animals (ARRIVE guidelines). The study was licenced by the UK Home Office (PB048F3A0)

Copyright

© 2022, Fielder et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,045
    views
  • 920
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edward Fielder
  2. Tengfei Wan
  3. Ghazaleh Alimohammadiha
  4. Abbas Ishaq
  5. Evon Low
  6. B Melanie Weigand
  7. George Kelly
  8. Craig Parker
  9. Brigid Griffin
  10. Diana Jurk
  11. Viktor I Korolchuk
  12. Thomas von Zglinicki
  13. Satomi Miwa
(2022)
Short senolytic or senostatic interventions rescue progression of radiation-induced frailty and premature ageing in mice
eLife 11:e75492.
https://doi.org/10.7554/eLife.75492

Share this article

https://doi.org/10.7554/eLife.75492

Further reading

    1. Cancer Biology
    Han V Han, Richard Efem ... Richard Z Lin
    Research Article

    Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca−/− KPC (named αKO) cancer cells induces clonal enrichment of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression, and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally enriched CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally enriched T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.

    1. Cancer Biology
    2. Immunology and Inflammation
    Almudena Mendez-Perez, Andres M Acosta-Moreno ... Esteban Veiga
    Short Report

    In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.