Towards a unified model of naive T cell dynamics across the lifespan

  1. Sanket Rane
  2. Thea Hogan
  3. Edward Lee
  4. Benedict Seddon  Is a corresponding author
  5. Andrew J Yates  Is a corresponding author
  1. Columbia University, United States
  2. University College London, United Kingdom
  3. Yale University, United States

Abstract

Naive CD4 and CD8 T cells are cornerstones of adaptive immunity, but the dynamics of their establishment early in life and how their kinetics change as they mature following release from the thymus are poorly understood. Further, due to the diverse signals implicated in naive T cell survival, it has been a long-held and conceptually attractive view that they are sustained by active homeostatic control as thymic activity wanes. Here we employ multiple experimental systems to identify a unified model of naive CD4 and CD8 T cell population dynamics in mice, across their lifespan. We infer that both subsets divide rarely and progressively increase their survival capacity with cell age. Strikingly, this simple model is able to describe naive CD4 T cell dynamics throughout life. In contrast, we find that newly generated naive CD8 T cells are lost more rapidly during the first 3-4 weeks of life, likely due to increased recruitment into memory. We find no evidence for elevated division rates in neonates, or for feedback regulation of naive T cell numbers at any age. We show how confronting mathematical models with diverse datasets can reveal a quantitative and remarkably simple picture of naive T cell dynamics in mice from birth into old age.

Data availability

All code and data used in this study are available at https://github.com/sanketrane/T_cell_dynamics_birth-death

Article and author information

Author details

  1. Sanket Rane

    Department of Pathology and Cell Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Thea Hogan

    Institute of Immunity and Transplantation, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Edward Lee

    Department of Laboratory Medicine, Yale University, Newhaven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Benedict Seddon

    Institute of Immunity and Transplantation, University College London, London, United Kingdom
    For correspondence
    benedict.seddon@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4352-3373
  5. Andrew J Yates

    Department of Pathology and Cell Biology, Columbia University, New York, United States
    For correspondence
    andrew.yates@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4606-4483

Funding

National Institutes of Health (R01AI093870)

  • Andrew J Yates

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All of the animals were handled according to UK home office regulations (licence PPL PP2330953) and institutional animal care and use committee (IACUC) protocols at University College London

Copyright

© 2022, Rane et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,993
    views
  • 457
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sanket Rane
  2. Thea Hogan
  3. Edward Lee
  4. Benedict Seddon
  5. Andrew J Yates
(2022)
Towards a unified model of naive T cell dynamics across the lifespan
eLife 11:e78168.
https://doi.org/10.7554/eLife.78168

Share this article

https://doi.org/10.7554/eLife.78168

Further reading

    1. Computational and Systems Biology
    Veronika Koren, Simone Blanco Malerba ... Stefano Panzeri
    Research Article

    The principle of efficient coding posits that sensory cortical networks are designed to encode maximal sensory information with minimal metabolic cost. Despite the major influence of efficient coding in neuroscience, it has remained unclear whether fundamental empirical properties of neural network activity can be explained solely based on this normative principle. Here, we derive the structural, coding, and biophysical properties of excitatory-inhibitory recurrent networks of spiking neurons that emerge directly from imposing that the network minimizes an instantaneous loss function and a time-averaged performance measure enacting efficient coding. We assumed that the network encodes a number of independent stimulus features varying with a time scale equal to the membrane time constant of excitatory and inhibitory neurons. The optimal network has biologically plausible biophysical features, including realistic integrate-and-fire spiking dynamics, spike-triggered adaptation, and a non-specific excitatory external input. The excitatory-inhibitory recurrent connectivity between neurons with similar stimulus tuning implements feature-specific competition, similar to that recently found in visual cortex. Networks with unstructured connectivity cannot reach comparable levels of coding efficiency. The optimal ratio of excitatory vs inhibitory neurons and the ratio of mean inhibitory-to-inhibitory vs excitatory-to-inhibitory connectivity are comparable to those of cortical sensory networks. The efficient network solution exhibits an instantaneous balance between excitation and inhibition. The network can perform efficient coding even when external stimuli vary over multiple time scales. Together, these results suggest that key properties of biological neural networks may be accounted for by efficient coding.

    1. Computational and Systems Biology
    Nobuhisa Umeki, Yoshiyuki Kabashima, Yasushi Sako
    Research Article

    The RAS-MAPK system plays an important role in regulating various cellular processes, including growth, differentiation, apoptosis, and transformation. Dysregulation of this system has been implicated in genetic diseases and cancers affecting diverse tissues. To better understand the regulation of this system, we employed information flow analysis based on transfer entropy (TE) between the activation dynamics of two key elements in cells stimulated with EGF: SOS, a guanine nucleotide exchanger for the small GTPase RAS, and RAF, a RAS effector serine/threonine kinase. TE analysis allows for model-free assessment of the timing, direction, and strength of the information flow regulating the system response. We detected significant amounts of TE in both directions between SOS and RAF, indicating feedback regulation. Importantly, the amount of TE did not simply follow the input dose or the intensity of the causal reaction, demonstrating the uniqueness of TE. TE analysis proposed regulatory networks containing multiple tracks and feedback loops and revealed temporal switching in the reaction pathway primarily responsible for reaction control. This proposal was confirmed by the effects of an MEK inhibitor on TE. Furthermore, TE analysis identified the functional disorder of a SOS mutation associated with Noonan syndrome, a human genetic disease, of which the pathogenic mechanism has not been precisely known yet. TE assessment holds significant promise as a model-free analysis method of reaction networks in molecular pharmacology and pathology.