DNA methylome combined with chromosome cluster-oriented analysis provides an early signature for cutaneous melanoma aggressiveness

  1. Arnaud Carrier
  2. Cécile Desjobert
  3. Loic Ponger
  4. Laurence Lamant
  5. Matias Bustos
  6. Jorge Torres-Ferreira
  7. Rui Henrique
  8. Carmen Jeronimo
  9. Luisa Lanfrancone
  10. Audrey Delmas
  11. Gilles Favre
  12. Antoine Delaunay
  13. Florence Busato
  14. Dave SB Hoon
  15. Jorg Tost
  16. Chantal Etievant
  17. Joëlle Riond
  18. Paola B Arimondo  Is a corresponding author
  1. CNRS-Pierre Fabre, France
  2. CNRS UMR 7196, INSERM U1154, France
  3. UMR 1037, INSERM, Université Toulouse III Paul Sabatier, France
  4. Providence Saint John's Health Center, United States
  5. Portuguese Oncology Institute, Portugal
  6. Instituto Europeo di Oncologia, Italy
  7. Fondation Jean Dausset-CEPH, France
  8. CNRS, CEA-Institut de Biologie François Jacob, France
  9. Institut Pasteur, CNRS UMR 3523, France

Abstract

Aberrant DNA methylation is a well‑known feature of tumours and has been associated with metastatic melanoma. However, since melanoma cells are highly heterogeneous, it has been challenging to use affected genes to predict tumour aggressiveness, metastatic evolution, and patients' outcomes. We hypothesized that common aggressive hypermethylation signatures should emerge early in tumorigenesis and should be shared in aggressive cells, independent of the physiological context under which this trait arises. We compared paired melanoma cell lines with the following properties: (i) each pair comprises one aggressive counterpart and its parental cell line, and (ii) the aggressive cell lines were each obtained from different host and their environment (human, rat, and mouse), though starting from the same parent cell line. Next, we developed a multi-step genomic pipeline that combines the DNA methylome profile with a chromosome cluster-oriented analysis. A total of 229 differentially hypermethylated genes were commonly found in the aggressive cell lines. Genome localization analysis revealed hypermethylation peaks and clusters, identifying eight hypermethylated gene promoters for validation in tissues from melanoma patients. Five CpG identified in primary melanoma tissues were transformed into a DNA methylation score that can predict survival (Log-rank test, p=0.0008). This strategy is potentially universally applicable to other diseases involving DNA methylation alterations.

Data availability

Sequencing data have been deposited in GEO under accession code GSE155856R-scripts are available in Source Code 1 fileThe datasets supporting the conclusions of this article are included within the article and the following Supplementary files

The following data sets were generated

Article and author information

Author details

  1. Arnaud Carrier

    Unité de Service et de Recherche USR 3388, CNRS-Pierre Fabre, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Cécile Desjobert

    Unité de Service et de Recherche USR 3388, CNRS-Pierre Fabre, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Loic Ponger

    CNRS UMR 7196, INSERM U1154, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Laurence Lamant

    Cancer Research Center of Toulouse, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Matias Bustos

    Department of Translational Molecular Medicine, Providence Saint John's Health Center, Santa Monica, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jorge Torres-Ferreira

    Cancer Biology and Epigenetics Group, Portuguese Oncology Institute, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  7. Rui Henrique

    Cancer Biology and Epigenetics Group, Portuguese Oncology Institute, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  8. Carmen Jeronimo

    Cancer Biology and Epigenetics Group, Portuguese Oncology Institute, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  9. Luisa Lanfrancone

    Department of Experimental Oncology, Instituto Europeo di Oncologia, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Audrey Delmas

    Cancer Research Center of Toulouse, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Gilles Favre

    Cancer Research Center of Toulouse, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Antoine Delaunay

    Laboratory for Functional Genomics, Fondation Jean Dausset-CEPH, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Florence Busato

    Laboratory for Epigenetics and Environment, CNRS, CEA-Institut de Biologie François Jacob, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Dave SB Hoon

    Department of Translational Molecular Medicine, Providence Saint John's Health Center, Santa Monica, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Jorg Tost

    Laboratory for Epigenetics and Environment, CNRS, CEA-Institut de Biologie François Jacob, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Chantal Etievant

    Unité de Service et de Recherche USR 3388, CNRS-Pierre Fabre, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  17. Joëlle Riond

    Unité de Service et de Recherche USR 3388, CNRS-Pierre Fabre, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  18. Paola B Arimondo

    Department Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3523, Paris, France
    For correspondence
    paola.arimondo@cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5175-4396

Funding

CNRS (ATIP to PBA)

  • Paola B Arimondo

Region Midi Pyrenees-CNRS (Equipe d'excellence to PBA)

  • Paola B Arimondo

Region Midi Pyrenees - CNRS (FEDER to PBA)

  • Paola B Arimondo

Fondation InnaBioSante (EpAM to PBA)

  • Paola B Arimondo

Adelson Medical Research Foundation (grant to DH and MB)

  • Dave SB Hoon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Tumour samples from melanoma patients were obtained from the tumour tissue bank at the Department of Pathology, IUCT-O Toulouse Hospital (France). The study was carried out in accordance with the institutional review board-approved protocols (CRB, AC-2013-1955) and the procedures followed were in accordance with the Helsinki Declaration.This study was approved by the institutional ethics committee of IPO Porto (CES-IPOP-FG13/2016).

Copyright

© 2022, Carrier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 613
    views
  • 170
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arnaud Carrier
  2. Cécile Desjobert
  3. Loic Ponger
  4. Laurence Lamant
  5. Matias Bustos
  6. Jorge Torres-Ferreira
  7. Rui Henrique
  8. Carmen Jeronimo
  9. Luisa Lanfrancone
  10. Audrey Delmas
  11. Gilles Favre
  12. Antoine Delaunay
  13. Florence Busato
  14. Dave SB Hoon
  15. Jorg Tost
  16. Chantal Etievant
  17. Joëlle Riond
  18. Paola B Arimondo
(2022)
DNA methylome combined with chromosome cluster-oriented analysis provides an early signature for cutaneous melanoma aggressiveness
eLife 11:e78587.
https://doi.org/10.7554/eLife.78587

Share this article

https://doi.org/10.7554/eLife.78587

Further reading

    1. Cancer Biology
    Han V Han, Richard Efem ... Richard Z Lin
    Research Article

    Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca−/− KPC (named αKO) cancer cells induces clonal enrichment of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression, and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally enriched CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally enriched T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.

    1. Cancer Biology
    2. Immunology and Inflammation
    Almudena Mendez-Perez, Andres M Acosta-Moreno ... Esteban Veiga
    Short Report

    In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.