Beta human papillomavirus 8E6 promotes alternative end-joining

  1. Changkun Hu
  2. Taylor Bugbee
  3. Rachel Palinski
  4. Ibukun A Akinyemi
  5. Michael T McIntosh
  6. Thomas MacCarthy
  7. Sumita Bhaduri-McIntosh
  8. Nicholas Wallace  Is a corresponding author
  1. Fred Hutchinson Cancer Research Center, United States
  2. Kansas State University, United States
  3. University of Florida, United States
  4. Stony Brook University, United States

Abstract

Double strand breaks (DSBs) are one of the most lethal DNA lesions in cells. The E6 protein of beta-human papillomavirus (HPV8 E6) impairs two critical DSB repair pathways; homologous recombination (HR) and non-homologous end-joining (NHEJ). However, HPV8 E6 only delays DSB repair. How DSBs are repaired in cells with HPV8 E6 remains to be studied. We hypothesize that HPV8 E6 promotes a less commonly used DSB repair pathway, alternative end-joining (Alt-EJ). Using CAS9 based Alt-EJ reporters, we show that HPV8 E6 promotes Alt-EJ. Further, using small molecule inhibitors, CRISPR/CAS9 gene knockout, and HPV8 E6 mutant, we find that HPV8 E6 promotes Alt-EJ by binding p300, an acetyltransferase that facilitates DSB repair by HR and NHEJ. At least some of this repair occurs through a subset of Alt-EJ known as polymerase theta dependent end joining. Finally, whole genome sequencing analysis showed HPV8 E6 caused an increased frequency of deletions bearing the microhomology signatures of Alt-EJ. This study fills the knowledge gap of how DSB is repaired in cells with HPV8 E6 and the mutagenic consequences of HPV8 E6 mediated p300 destabilization. Broadly, this study supports the hypothesis that beta-HPV promotes cancer formation by increasing genomic instability.

Data availability

Sequences have been deposited in the NCBI SRA database with accession number (PRJNA 856469).

The following data sets were generated

Article and author information

Author details

  1. Changkun Hu

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4407-7144
  2. Taylor Bugbee

    Division of Biology, Kansas State University, Manhattan, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rachel Palinski

    Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ibukun A Akinyemi

    Department of Pediatrics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael T McIntosh

    Department of Pediatrics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Thomas MacCarthy

    Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sumita Bhaduri-McIntosh

    Department of Pediatrics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Nicholas Wallace

    Division of Biology, Kansas State University, Manhattan, United States
    For correspondence
    nwallac@ksu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3971-716X

Funding

National Institute of General Medical Sciences (P20GM130448)

  • Nicholas Wallace

NIH Research Enhancement Award (NCI R15 CA242057 01A1)

  • Nicholas Wallace

U.S. Department of Defense (CMDRP PRCRP CA160224 (NW))

  • Nicholas Wallace

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Hu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,165
    views
  • 141
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Changkun Hu
  2. Taylor Bugbee
  3. Rachel Palinski
  4. Ibukun A Akinyemi
  5. Michael T McIntosh
  6. Thomas MacCarthy
  7. Sumita Bhaduri-McIntosh
  8. Nicholas Wallace
(2023)
Beta human papillomavirus 8E6 promotes alternative end-joining
eLife 12:e81923.
https://doi.org/10.7554/eLife.81923

Share this article

https://doi.org/10.7554/eLife.81923

Further reading

    1. Cancer Biology
    Qianqian Ju, Wenjing Sheng ... Cheng Sun
    Research Article

    TAK1 is a serine/threonine protein kinase that is a key regulator in a wide variety of cellular processes. However, the functions and mechanisms involved in cancer metastasis are still not well understood. Here, we found that TAK1 knockdown promoted esophageal squamous cancer carcinoma (ESCC) migration and invasion, whereas TAK1 overexpression resulted in the opposite outcome. These in vitro findings were recapitulated in vivo in a xenograft metastatic mouse model. Mechanistically, co-immunoprecipitation and mass spectrometry demonstrated that TAK1 interacted with phospholipase C epsilon 1 (PLCE1) and phosphorylated PLCE1 at serine 1060 (S1060). Functional studies revealed that phosphorylation at S1060 in PLCE1 resulted in decreased enzyme activity, leading to the repression of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. As a result, the degradation products of PIP2 including diacylglycerol (DAG) and inositol IP3 were reduced, which thereby suppressed signal transduction in the axis of PKC/GSK-3β/β-Catenin. Consequently, expression of cancer metastasis-related genes was impeded by TAK1. Overall, our data indicate that TAK1 plays a negative role in ESCC metastasis, which depends on the TAK1-induced phosphorylation of PLCE1 at S1060.

    1. Cancer Biology
    2. Cell Biology
    Rui Hua, Jean X Jiang
    Insight

    Cell crowding causes high-grade breast cancer cells to become more invasive by activating a molecular switch that causes the cells to shrink and spread.