Biallelic variants in MAD2L1BP (p31comet) cause female infertility characterized by oocyte maturation arrest

  1. Lingli Huang
  2. Wenqing Li
  3. Xingxing Dai
  4. Shuai Zhao
  5. Bo Xu
  6. Fengsong Wang
  7. Ren-Tao Jin
  8. Lihua Luo
  9. Liming Wu
  10. Xue Jiang
  11. Yu Cheng
  12. Jiaqi Zou
  13. Caoling Xu
  14. Xianhong Tong
  15. Heng-Yu Fan  Is a corresponding author
  16. Han Zhao  Is a corresponding author
  17. Jianqiang Bao  Is a corresponding author
  1. University of Science and Technology of China, China
  2. Zhejiang University, China
  3. Shandong University, China
  4. Anhui Medical University, China

Abstract

Human oocyte maturation arrest represents one of the severe conditions for female patients with primary infertility. However, the genetic factors underlying this human disease remain largely unknown. The spindle assembly checkpoint (SAC) is an intricate surveillance mechanism that ensures accurate segregation of chromosomes throughout cell cycles. Once the kinetochores of chromosomes are correctly attached to bipolar spindles and the SAC is satisfied, the MAD2L1BP, best known as p31comet, binds MAD2 and recruits the AAA+-ATPase TRIP13 to disassemble the mitotic checkpoint complex (MCC), leading to the cell cycle progression. In this study, by whole-exome sequencing (WES), we identified homozygous and compound heterozygous MAD2L1BP variants in three families with female patients diagnosed with primary infertility owing to oocyte metaphase I (MI) arrest. Functional studies revealed that the protein variants resulting from the C-terminal truncation of MAD2L1BP lost their binding ability to MAD2. cRNA microinjection of full-length or truncated MAD2L1BP uncovered their discordant roles in driving the extrusion of polar body 1 (PB1) in mouse oocytes. Furthermore, the patient’s oocytes carrying the mutated MAD2L1BP variants resumed polar body extrusion (PBE) when rescued by microinjection of full-length MAD2L1BP cRNAs. Together, our studies identified and characterized novel biallelic variants in MAD2L1BP responsible for human oocyte maturation arrest at MI, and thus prompted new therapeutic avenues for curing female primary infertility.

Data availability

Source Data files have been provided for Figure 2, Figure 3 and Table 2. Sequencing data have been deposited in GEO under accession code GSE232488.

The following data sets were generated

Article and author information

Author details

  1. Lingli Huang

    Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9748-267X
  2. Wenqing Li

    Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xingxing Dai

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Shuai Zhao

    Center for Reproductive Medicine, Shandong University, Jinan, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Bo Xu

    Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Fengsong Wang

    School of Life Science, Anhui Medical University, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Ren-Tao Jin

    Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Lihua Luo

    Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Liming Wu

    Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Xue Jiang

    Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Yu Cheng

    Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Jiaqi Zou

    Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Caoling Xu

    Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Xianhong Tong

    Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Heng-Yu Fan

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    For correspondence
    hyfan@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4544-4724
  16. Han Zhao

    Center for Reproductive Medicine, Shandong University, Jinan, China
    For correspondence
    hanzh80@sdu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  17. Jianqiang Bao

    Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
    For correspondence
    jqbao@ustc.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1248-2687

Funding

National Natural Science Foundation of China (81801440)

  • Lingli Huang

National Natural Science Foundation of China (82192874)

  • Han Zhao

National Natural Science Foundation of China (82171842)

  • Han Zhao

National Natural Science Foundation of China (31970793)

  • Jianqiang Bao

National Natural Science Foundation of China (32170856)

  • Jianqiang Bao

the Ministry of Science and Technology of China (2019YFA0802600)

  • Jianqiang Bao

the Fundamental Research Funds for the Central Universities (WK2070000156)

  • Jianqiang Bao

Startup funding (KY9100000001)

  • Jianqiang Bao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal care and experimental procedures were conducted in accordance with the Animal Research Committee guidelines of Zhejiang University (approval # ZJU20210252 to H.Y.F) and USTC (approval # 2019-N(A)-299 to J.Q.B).

Human subjects: Peripheral blood samples from all affected individuals and their available family members and ten Metaphase I (MI) arrested oocytes from the patient (F1: II-1) were donated for this study with written informed consent. This study was approved by the biomedical research ethics committees of Anhui Medical University on 1 March 2017(reference number 20170121; the Anhui Provincial Hospital Affiliated to Anhui Medical University, now renamed as the First Affiliated Hospital of USTC after December 2017).

Copyright

© 2023, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 977
    views
  • 136
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lingli Huang
  2. Wenqing Li
  3. Xingxing Dai
  4. Shuai Zhao
  5. Bo Xu
  6. Fengsong Wang
  7. Ren-Tao Jin
  8. Lihua Luo
  9. Liming Wu
  10. Xue Jiang
  11. Yu Cheng
  12. Jiaqi Zou
  13. Caoling Xu
  14. Xianhong Tong
  15. Heng-Yu Fan
  16. Han Zhao
  17. Jianqiang Bao
(2023)
Biallelic variants in MAD2L1BP (p31comet) cause female infertility characterized by oocyte maturation arrest
eLife 12:e85649.
https://doi.org/10.7554/eLife.85649

Share this article

https://doi.org/10.7554/eLife.85649

Further reading

    1. Developmental Biology
    Anastasiia Lozovska, Ana Casaca ... Moises Mallo
    Research Article

    During the trunk to tail transition the mammalian embryo builds the outlets for the intestinal and urogenital tracts, lays down the primordia for the hindlimb and external genitalia, and switches from the epiblast/primitive streak (PS) to the tail bud as the driver of axial extension. Genetic and molecular data indicate that Tgfbr1 is a key regulator of the trunk to tail transition. Tgfbr1 has been shown to control the switch of the neuromesodermal competent cells from the epiblast to the chordoneural hinge to generate the tail bud. We now show that in mouse embryos Tgfbr1 signaling also controls the remodeling of the lateral plate mesoderm (LPM) and of the embryonic endoderm associated with the trunk to tail transition. In the absence of Tgfbr1, the two LPM layers do not converge at the end of the trunk, extending instead as separate layers until the caudal embryonic extremity, and failing to activate markers of primordia for the hindlimb and external genitalia. The vascular remodeling involving the dorsal aorta and the umbilical artery leading to the connection between embryonic and extraembryonic circulation was also affected in the Tgfbr1 mutant embryos. Similar alterations in the LPM and vascular system were also observed in Isl1 null mutants, indicating that this factor acts in the regulatory cascade downstream of Tgfbr1 in LPM-derived tissues. In addition, in the absence of Tgfbr1 the embryonic endoderm fails to expand to form the endodermal cloaca and to extend posteriorly to generate the tail gut. We present evidence suggesting that the remodeling activity of Tgfbr1 in the LPM and endoderm results from the control of the posterior PS fate after its regression during the trunk to tail transition. Our data, together with previously reported observations, place Tgfbr1 at the top of the regulatory processes controlling the trunk to tail transition.

    1. Developmental Biology
    2. Neuroscience
    Odessa R Yabut, Jessica Arela ... Samuel J Pleasure
    Research Article

    Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, Suppressor of Fused (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MBSHH). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and SUFU mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MBSHH cases and that FGF5 expression is uniquely upregulated in infantile MBSHH tumors. Similarly, mice lacking SUFU (Sufu-cKO) ectopically express Fgf5 specifically along the secondary fissure where GNPs harbor preneoplastic lesions and show that FGFR signaling is also ectopically activated in this region. Treatment with an FGFR antagonist rescues the severe GNP hyperplasia and restores cerebellar architecture. Thus, direct inhibition of FGF signaling may be a promising and novel therapeutic candidate for infantile MBSHH.