Profiling the bloodstream form and procyclic form Trypanosoma brucei cell cycle using single cell transcriptomics

  1. Emma M Briggs  Is a corresponding author
  2. Catarina A Marques
  3. Guy R Oldrieve
  4. Jihua Hu
  5. Thomas D Otto
  6. Keith R Matthews
  1. University of Edinburgh, United Kingdom
  2. University of Glasgow, United Kingdom

Abstract

African trypanosomes proliferate as bloodstream forms and procyclic forms in the mammal and tsetse fly midgut, respectively. This allows them to colonise the host environment upon infection and ensure life cycle progression. Yet, understanding of the mechanisms that regulate and drive the cell replication cycle of these forms is limited. Using single cell transcriptomics on unsynchronised cell populations, we have obtained high resolution cell cycle regulated transcriptomes of both procyclic and slender bloodstream form Trypanosoma brucei without prior cell sorting or synchronisation. Additionally, we describe an efficient freeze-thawing protocol that allows single cell transcriptomic analysis of cryopreserved T. brucei. Computational reconstruction of the cell cycle using periodic pseudotime inference allowed the dynamic expression patterns of cycling genes to be profiled for both life cycle forms. Comparative analyses identify a core cycling transcriptome highly conserved between forms, as well as several genes where transcript levels dynamics are form-specific. Comparing transcript expression patterns with protein abundance revealed that the majority of genes with periodic cycling transcript and protein levels exhibit a relative delay between peak transcript and protein expression. This work reveals novel detail of the cell cycle regulated transcriptomes of both forms, which are available for further interrogation via an interactive webtool.

Data availability

The transcriptome data generated in this study have been deposited in the EuropeanNucleotide Archive with project accession number PRJEB58781. The processed transcript count data and cell metadata generated in this study are available at Zenodo (10.5281/zenodo.7508131). BSF and PCF cell cycle transcriptomes can also explored using the interactive cell atlas (https://cellatlas-cxg.mvls.gla.ac.uk/Tbrucei.cellcycle.bsf/ and https://cellatlas-cxg.mvls.gla.ac.uk/Tbrucei.cellcycle.pcf/).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Emma M Briggs

    Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    ebriggs@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6740-8882
  2. Catarina A Marques

    School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1324-5448
  3. Guy R Oldrieve

    Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Jihua Hu

    Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas D Otto

    School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1246-7404
  6. Keith R Matthews

    Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0309-9184

Funding

Wellcome Trust (218648/Z/19/Z)

  • Emma M Briggs

Wellcome Trust (104111/Z/14/ZR)

  • Thomas D Otto

Wellcome Trust (221717/Z/20/Z)

  • Keith R Matthews

Wellcome Trust (220058/Z/19/Z)

  • Guy R Oldrieve
  • Keith R Matthews

Biotechnology and Biological Sciences Research Council (BB/R017166/1)

  • Catarina A Marques

Biotechnology and Biological Sciences Research Council (BB/W001101/1)

  • Catarina A Marques

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Briggs et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,717
    views
  • 235
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emma M Briggs
  2. Catarina A Marques
  3. Guy R Oldrieve
  4. Jihua Hu
  5. Thomas D Otto
  6. Keith R Matthews
(2023)
Profiling the bloodstream form and procyclic form Trypanosoma brucei cell cycle using single cell transcriptomics
eLife 12:e86325.
https://doi.org/10.7554/eLife.86325

Share this article

https://doi.org/10.7554/eLife.86325

Further reading

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.