Abstract

Heterogeneity of glucose-stimulated insulin secretion (GSIS) in pancreatic islets is physiologically important but poorly understood. Here, we utilize mouse islets to determine how microtubules affect secretion toward the vascular extracellular matrix at single cell and subcellular levels. Our data indicate that microtubule stability in the β-cell population is heterogenous, and that GSIS is suppressed in cells with highly stable microtubules. Consistently, microtubule hyper-stabilization prevents, and microtubule depolymerization promotes capacity of single β-cell for GSIS. Analysis of spatiotemporal patterns of secretion events shows that microtubule depolymerization activates otherwise dormant β-cells via initiation of secretion clusters (hot spots). Microtubule depolymerization also enhances secretion from individual cells, introducing both additional clusters and scattered events. Interestingly, without microtubules, the timing of clustered secretion is dysregulated, extending the first phase of GSIS and causing oversecretion. In contrast, glucose-induced Ca2+ influx was not affected by microtubule depolymerization yet required for secretion under these conditions, indicating that microtubule-dependent regulation of secretion hot spots acts in parallel with Ca2+ signaling. Our findings uncover a novel microtubule function in tuning insulin secretion hot spots, which leads to accurately measured and timed response to glucose stimuli and promotes functional β-cell heterogeneity.

Data availability

All numerical data generated during this study are included in the manuscript and supporting files. Source data files have been provided for all figures. Code is provided for computational data.

Article and author information

Author details

  1. Kathryn P Trogden

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3288-3859
  2. Justin S Lee

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kai M Bracey

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kung-Hsien Ho

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hudson McKinney

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaodong Zhu

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Goker Arpag

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6893-2678
  8. Thomas G Folland

    Department of Mechanical Engineering, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Anna B Osipovich

    Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Mark A Magnuson

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8824-6499
  11. Marija Zanic

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5127-5819
  12. Guoqiang Gu

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. William R Holmes

    Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Irina Kaverina

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    For correspondence
    irina.kaverina@vanderbilt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4002-8599

Funding

National Institutes of Health (T32 DK07061)

  • Kathryn P Trogden

National Institutes of Health (1F32DK117529)

  • Kathryn P Trogden

National Institutes of Health (R35-GM127098)

  • Irina Kaverina

National Institutes of Health (R01-DK65949)

  • Guoqiang Gu

National Institutes of Health (DMS1562078)

  • William R Holmes

National Institutes of Health (R01-DK106228)

  • Guoqiang Gu
  • William R Holmes
  • Irina Kaverina

National Institutes of Health (R35-GM119552)

  • Marija Zanic

National Institutes of Health (F31 DK122650)

  • Kai M Bracey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (protocol M1500060-00) of Vanderbilt University.

Copyright

© 2021, Trogden et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,441
    views
  • 343
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kathryn P Trogden
  2. Justin S Lee
  3. Kai M Bracey
  4. Kung-Hsien Ho
  5. Hudson McKinney
  6. Xiaodong Zhu
  7. Goker Arpag
  8. Thomas G Folland
  9. Anna B Osipovich
  10. Mark A Magnuson
  11. Marija Zanic
  12. Guoqiang Gu
  13. William R Holmes
  14. Irina Kaverina
(2021)
Microtubules regulate pancreatic β cell heterogeneity via spatiotemporal control of insulin secretion hot spots
eLife 10:e59912.
https://doi.org/10.7554/eLife.59912

Share this article

https://doi.org/10.7554/eLife.59912

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.