Abstract

Heterogeneity of glucose-stimulated insulin secretion (GSIS) in pancreatic islets is physiologically important but poorly understood. Here, we utilize mouse islets to determine how microtubules affect secretion toward the vascular extracellular matrix at single cell and subcellular levels. Our data indicate that microtubule stability in the β-cell population is heterogenous, and that GSIS is suppressed in cells with highly stable microtubules. Consistently, microtubule hyper-stabilization prevents, and microtubule depolymerization promotes capacity of single β-cell for GSIS. Analysis of spatiotemporal patterns of secretion events shows that microtubule depolymerization activates otherwise dormant β-cells via initiation of secretion clusters (hot spots). Microtubule depolymerization also enhances secretion from individual cells, introducing both additional clusters and scattered events. Interestingly, without microtubules, the timing of clustered secretion is dysregulated, extending the first phase of GSIS and causing oversecretion. In contrast, glucose-induced Ca2+ influx was not affected by microtubule depolymerization yet required for secretion under these conditions, indicating that microtubule-dependent regulation of secretion hot spots acts in parallel with Ca2+ signaling. Our findings uncover a novel microtubule function in tuning insulin secretion hot spots, which leads to accurately measured and timed response to glucose stimuli and promotes functional β-cell heterogeneity.

Data availability

All numerical data generated during this study are included in the manuscript and supporting files. Source data files have been provided for all figures. Code is provided for computational data.

Article and author information

Author details

  1. Kathryn P Trogden

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3288-3859
  2. Justin S Lee

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kai M Bracey

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kung-Hsien Ho

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hudson McKinney

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaodong Zhu

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Goker Arpag

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6893-2678
  8. Thomas G Folland

    Department of Mechanical Engineering, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Anna B Osipovich

    Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Mark A Magnuson

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8824-6499
  11. Marija Zanic

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5127-5819
  12. Guoqiang Gu

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. William R Holmes

    Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Irina Kaverina

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    For correspondence
    irina.kaverina@vanderbilt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4002-8599

Funding

National Institutes of Health (T32 DK07061)

  • Kathryn P Trogden

National Institutes of Health (1F32DK117529)

  • Kathryn P Trogden

National Institutes of Health (R35-GM127098)

  • Irina Kaverina

National Institutes of Health (R01-DK65949)

  • Guoqiang Gu

National Institutes of Health (DMS1562078)

  • William R Holmes

National Institutes of Health (R01-DK106228)

  • Guoqiang Gu
  • William R Holmes
  • Irina Kaverina

National Institutes of Health (R35-GM119552)

  • Marija Zanic

National Institutes of Health (F31 DK122650)

  • Kai M Bracey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (protocol M1500060-00) of Vanderbilt University.

Copyright

© 2021, Trogden et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,475
    views
  • 347
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kathryn P Trogden
  2. Justin S Lee
  3. Kai M Bracey
  4. Kung-Hsien Ho
  5. Hudson McKinney
  6. Xiaodong Zhu
  7. Goker Arpag
  8. Thomas G Folland
  9. Anna B Osipovich
  10. Mark A Magnuson
  11. Marija Zanic
  12. Guoqiang Gu
  13. William R Holmes
  14. Irina Kaverina
(2021)
Microtubules regulate pancreatic β cell heterogeneity via spatiotemporal control of insulin secretion hot spots
eLife 10:e59912.
https://doi.org/10.7554/eLife.59912

Share this article

https://doi.org/10.7554/eLife.59912

Further reading

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.